A priori bounds for positive solutions of Kirchhoff type equations
Let Ω be a bounded smooth domain in RN. Assume that 00. We consider the following Dirichlet problem of Kirchhoff type equation (0.1)−(a+b‖∇u‖22α)Δu=|u|p−1u+h(x,u,∇u)inΩ,u=0on∂Ωwith p∈(0,2∗)∖{1}. Where 2∗=+∞ for N=2, and 2∗=N+2N−2 for N≥3. Under suitable conditions of h(x,u,∇u) (see (A), (H1) and (H2...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2018-09, Vol.76 (6), p.1525-1534 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω be a bounded smooth domain in RN. Assume that 00. We consider the following Dirichlet problem of Kirchhoff type equation (0.1)−(a+b‖∇u‖22α)Δu=|u|p−1u+h(x,u,∇u)inΩ,u=0on∂Ωwith p∈(0,2∗)∖{1}. Where 2∗=+∞ for N=2, and 2∗=N+2N−2 for N≥3. Under suitable conditions of h(x,u,∇u) (see (A), (H1) and (H2) in Section 3), we get a priori estimates for positive solutions to problem (0.1). By making use of these estimates and the continuous method, we further get some existence results for positive solutions to problem (0.1) when 0 |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2018.07.004 |