A priori bounds for positive solutions of Kirchhoff type equations

Let Ω be a bounded smooth domain in RN. Assume that 00. We consider the following Dirichlet problem of Kirchhoff type equation (0.1)−(a+b‖∇u‖22α)Δu=|u|p−1u+h(x,u,∇u)inΩ,u=0on∂Ωwith p∈(0,2∗)∖{1}. Where 2∗=+∞ for N=2, and 2∗=N+2N−2 for N≥3. Under suitable conditions of h(x,u,∇u) (see (A), (H1) and (H2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-09, Vol.76 (6), p.1525-1534
Hauptverfasser: Dai, Qiuyi, Lan, Enhao, Shi, Feilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be a bounded smooth domain in RN. Assume that 00. We consider the following Dirichlet problem of Kirchhoff type equation (0.1)−(a+b‖∇u‖22α)Δu=|u|p−1u+h(x,u,∇u)inΩ,u=0on∂Ωwith p∈(0,2∗)∖{1}. Where 2∗=+∞ for N=2, and 2∗=N+2N−2 for N≥3. Under suitable conditions of h(x,u,∇u) (see (A), (H1) and (H2) in Section 3), we get a priori estimates for positive solutions to problem (0.1). By making use of these estimates and the continuous method, we further get some existence results for positive solutions to problem (0.1) when 0
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2018.07.004