In situ X-ray micro-CT for investigation of damage evolution in black shale under uniaxial compression

Crack damage evolution of shale is crucial to the hydraulic fracturing treatment and engineering stability. Although many effects have been done on the macroscopic characteristics of shale, yet the microscopic failure mechanism is not well understood. A uniaxial compressive test on black shale was c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2018-10, Vol.77 (20), p.1-12, Article 717
Hauptverfasser: Wang, Y., Hou, Z. Q., Hu, Y. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crack damage evolution of shale is crucial to the hydraulic fracturing treatment and engineering stability. Although many effects have been done on the macroscopic characteristics of shale, yet the microscopic failure mechanism is not well understood. A uniaxial compressive test on black shale was conducted under topographic monitoring using in situ X-ray micro-tomography (µCT). A series of high-resolution reconstruction images were obtained by carrying out CT scans at six key points throughout the test to obtain the internal structure of shale sample. In addition, the CT values for the purpose of crack damage evolution in shale were identified. Clear 2D/3D CT images, CT value analysis and image segmentation analysis reveal that the sample experiences compression, damage, cracking, crack propagation, and collapse stages. Crack geometry and distribution in the shale sample is visualized by rendered CT images, and a combined tension and shear failure mode is observed from the fracture rose diagram. This work suggests that formation and propagation of fractures are influenced by the stratified structure and weak cementation medium between layers.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-018-7904-6