Magnetocrystalline anisotropy of FePt: A detailed view

To get a reliable ab initio value for the magnetocrystalline anisotropy (MCA) energy of FePt, we employ the full-potential linearized augmented plane wave (FLAPW) method and the full-potential Korringa-Kohn-Rostoker (KKR) Green function method. The MCA energies calculated by both methods are in good...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-10, Vol.94 (14), p.144436, Article 144436
Hauptverfasser: Ayaz Khan, Saleem, Blaha, Peter, Ebert, Hubert, Minár, Jan, Šipr, Ondřej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To get a reliable ab initio value for the magnetocrystalline anisotropy (MCA) energy of FePt, we employ the full-potential linearized augmented plane wave (FLAPW) method and the full-potential Korringa-Kohn-Rostoker (KKR) Green function method. The MCA energies calculated by both methods are in good agreement with each other. As the calculated MCA energy significantly differs from experiment, it is clear that many-body effects beyond the local density approximation are essential. It is not really important whether relativistic effects for FePt are accounted for by solving the full Dirac equation or whether the spin-orbit coupling (SOC) is treated as a correction to the scalar-relativistic Hamiltonian. From the analysis of the dependence of the MCA energy on the magnetization angle and on the SOC strength it follows that the main mechanism of MCA in FePt can be described within second order perturbation theory. However, a distinct contribution not accountable for by second order perturbation theory is present as well.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.94.144436