Burrowing Crabs Weaken Mutualism Between Foundation Species
Foundation species often interact with each other and co-create habitat upon which other species depend. Whether the presence of these facilitated species feeds back to mediate the growth and resilience of the foundation species themselves, and influence the strength of their interactions, remains p...
Gespeichert in:
Veröffentlicht in: | Ecosystems (New York) 2019-06, Vol.22 (4), p.767-780 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Foundation species often interact with each other and co-create habitat upon which other species depend. Whether the presence of these facilitated species feeds back to mediate the growth and resilience of the foundation species themselves, and influence the strength of their interactions, remains poorly understood. In a 16-month field experiment in a southeastern US salt marsh, we tested how the overlapping presence of two foundation species, cordgrass (Spartina alterniflora) and ribbed mussels (Geukensia demissa), influences the abundance of facilitated species, specifically burrowing crabs (mainly Uca pugnax), and how crabs, in turn, affect each foundation species and their mutualistic interaction. Mussel aggregations enhanced crab abundance 3.9-fold, which in turn reduced both mussel and cordgrass growth and stifled cordgrass recovery after a simulated disturbance. Porewater and plant tissue analyses suggest crabs reduced cordgrass growth by reducing nitrogen availability, damaging roots, and potentially interfering with mussel deposition of nutrient-rich pseudofeces. A five-site field survey along 700 km southeastern US coastline revealed that cordgrass biomass and crab abundance are consistently higher in mussel aggregations. Furthermore, cordgrass biomass correlated negatively with crab abundance, supporting our experimental findings and the hypothesis that facilitated biota can negatively impact the foundation species upon which they depend. We anticipate that such negative, but non-lethal, feedbacks between foundation species and the biota they facilitate may be a common but overlooked phenomenon controlling foundation species growth and interactions in a wide range of ecosystems. |
---|---|
ISSN: | 1432-9840 1435-0629 |
DOI: | 10.1007/s10021-018-0301-x |