Numerical Study of Physical Processes Controlling Summer Precipitation over the Western Ghats Region

Summer precipitation over the Western Ghats and its adjacent Arabian Sea is an important component of the Indian monsoon. To advance understanding of the physical processes controlling this regional precipitation, a series of high-resolution convection-permitting simulations were conducted using the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2018-04, Vol.31 (8), p.3099-3115
Hauptverfasser: Zhang, Gang, Smith, Ronald B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summer precipitation over the Western Ghats and its adjacent Arabian Sea is an important component of the Indian monsoon. To advance understanding of the physical processes controlling this regional precipitation, a series of high-resolution convection-permitting simulations were conducted using the Weather Research and Forecasting (WRF) Model. Convection simulated in the WRF Model agrees with TRMM and MODIS satellite estimates. Sensitivity simulations are conducted, by altering topography, latent heating, and sea surface temperature (SST), to quantify the effects of different physical forcing factors. It is helpful to put India’s west coast rainfall systems into three categories with different causes and characteristics. 1) Offshore rainfall is controlled by incoming convective available potential energy (CAPE), the entrainment of midtropospheric dry layer in the monsoon westerlies, and the latent heat flux and SST of the Arabian Sea. It is not triggered by the Western Ghats. When offshore convection is present, it reduces both CAPE and the downwind coastal rainfall. Strong (weak) offshore rainfall is associated with high (low) SSTs in the Arabian Sea, suggested by both observations and sensitivity simulations. 2) Coastal convective rainfall is forced by the coastline roughness, diurnal heating, and the Western Ghats topography. This localized convective rainfall ends abruptly beyond the Western Ghats, producing a rain shadow to the east of the mountains. This deep convection with mixed phase microphysics is the biggest overall rain producer. 3) Orographic stratiform warm rain and drizzle dominate the local precipitation on the crest of the Western Ghats.
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-17-0002.1