Concurrent Changes to Hadley Circulation and the Meridional Distribution of Tropical Cyclones

Poleward trends in seasonal-mean latitudes of tropical cyclones (TCs) have been identified in direct observations from 1980 to the present. Paleoclimate reconstructions also indicate poleward–equatorward migrations over centennial–millennial time scales. Hadley circulation (HC) is often both implici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2018-06, Vol.31 (11), p.4367-4389
Hauptverfasser: Studholme, Joshua, Gulev, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poleward trends in seasonal-mean latitudes of tropical cyclones (TCs) have been identified in direct observations from 1980 to the present. Paleoclimate reconstructions also indicate poleward–equatorward migrations over centennial–millennial time scales. Hadley circulation (HC) is often both implicitly and explicitly invoked to provide dynamical linkages to these shifts, although no direct analysis of concurrent changes in the recent period has been presented. Here, the observational TC record (1981–2016) and ERA-Interim, JRA-55, and MERRA-2 are studied to examine potential relationships between the two. A zonally asymmetric HC is defined by employing Helmholtz theory for vector decomposition, and this permits the derivation of novel HC diagnostics local to TC basins. Coherent variations in both long-term linear trends and detrended interannual variability are found. TC genesis and lifetime maximum intensity latitudes share trend sign and magnitude with shifts in local HC extent, with rates being approximately 0.25° ± 0.1° lat decade−1. Both these life cycle stages in hemispheric means and all Pacific TC basins, as well as poleward-extreme North Atlantic lysis latitudes, shared approximately 35% of their interannual variability with HC extent. Local HC intensity is linked only to eastern North Pacific TC latitudes, where strong local overturning corresponds to equatorward TC shifts. Examination of potential dynamical linkages implicates La Niña–like sea surface temperature gradients to poleward HC termini. This corresponds to increased tropical and reduced subtropical vertical wind shear everywhere except in the North Atlantic and western North Pacific, where the opposite is true. These results quantify a long-hypothesized link between TCs and the large-scale oceanic–atmospheric state.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-17-0852.1