COORDINATED UPPER-TROPOSPHERE-TO-STRATOSPHERE BALLOON EXPERIMENT IN BIAK

The stratospheric response to climate forcing, such as an increase in greenhouse gases, is often unpredictable because of interactions between radiation, dynamics, and chemistry. Climate models are unsuccessful in simulating the realistic distribution of stratospheric water vapor. The long-term tren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2018-06, Vol.99 (6), p.1213-1230
Hauptverfasser: Hasebe, F., Aoki, S., Morimoto, S., Inai, Y., Nakazawa, T., Sugawara, S., Ikeda, C., Honda, H., Yamazaki, H., Halimurrahman, Komala, N., Putri, F. A., Budiyono, A., Soedjarwo, M., Ishidoya, S., Toyoda, S., Shibata, T., Hayashi, M., Eguchi, N., Nishi, N., Fujiwara, M., Ogino, S.-Y., Shiotani, M., Sugidachi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stratospheric response to climate forcing, such as an increase in greenhouse gases, is often unpredictable because of interactions between radiation, dynamics, and chemistry. Climate models are unsuccessful in simulating the realistic distribution of stratospheric water vapor. The long-term trend of the stratospheric age of air (AoA), a measure that characterizes the stratospheric turnover time, remains inconsistent between diagnoses in climate models and estimates from tracer observations. For these reasons, observations designed specifically to distinguish the effects of individual contributing processes are required. Here, we report on the Coordinated Upper-Troposphere-to-Stratosphere Balloon Experiment in Biak (CUBE/Biak), an observation campaign organized in Indonesia. Being inside the “tropical pipe” makes it possible to study the dehydration in the tropical tropopause layer and the gradual ascent in the stratosphere while minimizing the effects of multiple circulation pathways and wave mixing. Cryogenic sampling of minor constituents and major isotopes was conducted simultaneously with radiosonde observations of water vapor, ozone, aerosols, and cloud particles. The water vapor “tape recorder,” gravitational separation, and isotopocules are being studied in conjunction with tracers that are accumulated in the atmosphere as dynamical and chemical measures of elapsed time since stratospheric air entry. The observational estimates concerning the AoA and water vapor tape recorder are compared with those derived from trajectory calculations.
ISSN:0003-0007
1520-0477
DOI:10.1175/bams-d-16-0289.1