Identifying critical autonomous systems in the Internet
The Internet not only facilitates our daily activities, such as communication, entertainment and shopping but also serves as the enabling technology for many critical services, including finance, manufacturing, healthcare and transportation. On the other hand, a wide spectrum of attacks targets its...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2018-10, Vol.74 (10), p.4965-4985 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Internet not only facilitates our daily activities, such as communication, entertainment and shopping but also serves as the enabling technology for many critical services, including finance, manufacturing, healthcare and transportation. On the other hand, a wide spectrum of attacks targets its communication infrastructure to disable or disrupt the network connectivity and traffic flow until recovery processes take place. Attacking all autonomous systems (ASes) in the Internet is typically beyond the capability of an adversary. Therefore, targeting a small number of ASes which results in the highest impact is the best strategy for attackers. Similarly, it is important for network practitioners to identify, fortify and secure those critical ASes to mitigate the impact of the attacks. In this study we introduce an intuitive and effective measure, IP address spatial path stress centrality, to assess and identify the critical ASes in the Internet. We compare IP address spatial path stress centrality to the three well-known and widely used centrality measures, namely customer-cone size, node degree and betweenness. We demonstrate that the proposed measure incorporates business relations and IP address spaces to achieve a better measure for identifying the critical ASes in the Internet. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-018-2336-3 |