Core-branched CoSe2/Ni0.85Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors

Nanotube arrays have shown great potential in a variety of important applications, such as hybrid supercapacitors. In order to endow nanotubes with multifunctionality, rationally designed and fabricated nanotube arrays with controllable structures are highly desired, but still remain a great challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (39), p.19151-19158
Hauptverfasser: Lin, Jinghuang, Wang, Haohan, Yaotian Yan, Zheng, Xiaohang, Jia, Henan, Qi, Junlei, Cao, Jian, Tu, Jinchun, Fei, Weidong, Feng, Jicai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanotube arrays have shown great potential in a variety of important applications, such as hybrid supercapacitors. In order to endow nanotubes with multifunctionality, rationally designed and fabricated nanotube arrays with controllable structures are highly desired, but still remain a great challenge. Herein, we report a facile synthesis strategy for core-branched CoSe2/Ni0.85Se nanotube arrays directly on Ni foam by simply selenizing Co-precursor nanowires for hybrid supercapacitors. This structure design could not only ensure the intimate contact of self-branched heterostructures, but also offer sufficient active sites for electrochemical reactions. Further, we propose an electrochemical activation strategy to fully boost the electrochemical performance of CoSe2/Ni0.85Se nanotube arrays. After electrochemical activation, CoSe2/Ni0.85Se nanotube arrays have been changed into porous CoOOH/NiOOH, accounting for the remarkable performance. Contributed to by short ion diffusion paths, large electroactive sites and low contact resistance, the CoSe2/Ni0.85Se electrode after electrochemical activation shows remarkable performance for hybrid supercapacitors.
ISSN:2050-7488
2050-7496
DOI:10.1039/c8ta08263d