Therapeutic Effects of Coccomyxagloeobotrydiformis on the Metabolic Syndrome in Rats
Background/Aims: The metabolic syndrome (MS) is a cluster of metabolic changes that carry a high risk of cardiovascular disease (CVD). A newly discovered microalga, coccomyxagloeobotrydiformis (CGD), has been reported to improve ischemic stroke and metabolism-related indicators. We observed the ther...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2018-01, Vol.48 (4), p.1519-1529 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background/Aims: The metabolic syndrome (MS) is a cluster of metabolic changes that carry a high risk of cardiovascular disease (CVD). A newly discovered microalga, coccomyxagloeobotrydiformis (CGD), has been reported to improve ischemic stroke and metabolism-related indicators. We observed the therapeutic effects of CGD on MS and postulated the underlying mechanism. Methods: A diet-induced MS model in rats was used to observe the therapeutic effects of CGD on MS. Blood-glucose and lipid indices were measured using enzymatic colorimetric kits. A biologic data acquisition and analysis system (BL-420F) was used to evaluate cardiac function. Expression of mitochondrial respiratory chain (MRC) enzymes was measured by immunofluorescence staining. The proteins associated with oxidative stress, apoptosis and inflammation were detected by western blotting. Results: Body weight, abdominal circumference, fasting blood glucose , blood pressure as well as serum levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol were decreased whereas serum levels of high-density lipoprotein-cholesterol was increased in CGD-treated MS rats. CGD increased left-ventricular systolic pressure, left-ventricular end-diastolic pressure, left-ventricular systolic pressure maximum rate of increase and left-ventricular diastolic pressure maximum rate of decrease in MS rats with cardiovascular complications. CGD up-regulated expression of adenosine monophosphate-activated protein kinase and peroxisome proliferator activated receptor gamma coactivator 1-alpha in the heart, adipose tissue and skeletal muscle. Expression of the MRC subunits of ATPase 6, cytochrome b and succinate dehydrogenase complex, subunit-A was increased whereas that of uncoupling protein-2 decreased in different tissues. CGD showed anti-oxidation effects by increasing expression of superoxide dismutase and decreasing that of malondialdehyde. High expression of Bcl-2 and low expression of Bax and caspase-3 supported the anti-apoptotic effect of CGD on the cardiovascular complications of MS. Conclusion: CGD has a therapeutic effect on MS and associated cardiovascular complications by eliciting mitochondrial protection and having anti-oxidation and anti-apoptosis effects. CGD could be used for MS treatment. |
---|---|
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.1159/000492262 |