Vandermonde Factorization of Hankel Matrix for Complex Exponential Signal Recovery-Application in Fast NMR Spectroscopy
Many signals are modeled as a superposition of exponential functions in spectroscopy of chemistry, biology, and medical imaging. This paper studies the problem of recovering exponential signals from a random subset of samples. We exploit the Vandermonde structure of the Hankel matrix formed by the e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2018-11, Vol.66 (21), p.5520-5533 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many signals are modeled as a superposition of exponential functions in spectroscopy of chemistry, biology, and medical imaging. This paper studies the problem of recovering exponential signals from a random subset of samples. We exploit the Vandermonde structure of the Hankel matrix formed by the exponential signal and formulate signal recovery as Hankel matrix completion with Vandermonde factorization (HVaF). A numerical algorithm is developed to solve the proposed model and its sequence convergence is analyzed theoretically. Experiments on synthetic data demonstrate that HVaF succeeds over a wider regime than the state-of-the-art nuclear-norm-minimization-based Hankel matrix completion method, while it has a less restriction on frequency separation than the state-of-the-art atomic norm minimization and fast iterative hard thresholding methods. The effectiveness of HVaF is further validated on biological magnetic resonance spectroscopy data. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2018.2869122 |