Carnosine Catalyzes the Formation of the Oligo/Polymeric Products of Methylglyoxal

Background/Aims: Reactive dicarbonyl compounds, such as methylglyoxal (MG), contribute to diabetic complications. MG-scavenging capacities of carnosine and anserine, which have been shown to mitigate diabetic nephropathy, were evaluated in vitro and in vivo. Methods: MG-induced cell toxicity was cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2018-01, Vol.46 (2), p.713-726
Hauptverfasser: Weigand, Tim, Singler, Benjamin, Fleming, Thomas, Nawroth, Peter, Klika, Karel D., Thiel, Christian, Baelde, Hans, Garbade, Sven F., Wagner, Andreas H., Hecker, Markus, Yard, Benito A., Amberger, Albert, Zschocke, Johannes, Schmitt, Claus P., Peters, Verena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background/Aims: Reactive dicarbonyl compounds, such as methylglyoxal (MG), contribute to diabetic complications. MG-scavenging capacities of carnosine and anserine, which have been shown to mitigate diabetic nephropathy, were evaluated in vitro and in vivo. Methods: MG-induced cell toxicity was characterized by MTT and MG-H1-formation, scavenging abilities by Western Blot and NMR spectroscopies, cellular carnosine transport by qPCR and microplate luminescence and carnosine concentration by HPLC. Results: In vitro, carnosine and anserine dose-dependently reduced N-carboxyethyl lysine (CEL) and advanced glycation end products (AGEs) formation. NMR studies revealed the formation of oligo/polymeric products of MG catalyzed by carnosine or anserine. MG toxicity (0.3-1 mM) was dose-dependent for podocytes, tubular and mesangial cells whereas low MG levels (0.2 mM) resulted in increased cell viability in podocytes (143±13%, p
ISSN:1015-8987
1421-9778
DOI:10.1159/000488727