Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons
Background/Aims: Glycine plays an important role in regulating hippocampal inhibitory/ excitatory neurotransmission through activating glycine receptors (GlyRs) and acting as a co-agonist of N-methyl-d-aspartate-type glutamate receptors. Activation of transient receptor potential vanilloid 4 (TRPV4)...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2018-01, Vol.45 (3), p.1084-1096 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background/Aims: Glycine plays an important role in regulating hippocampal inhibitory/ excitatory neurotransmission through activating glycine receptors (GlyRs) and acting as a co-agonist of N-methyl-d-aspartate-type glutamate receptors. Activation of transient receptor potential vanilloid 4 (TRPV4) is reported to inhibit hippocampal A-type γ-aminobutyric acid receptor, a ligand-gated chloride ion channel. GlyRs are also ligand-gated chloride ion channels and this paper aimed to explore whether activation of TRPV4 could modulate GlyRs. Methods: Whole-cell patch clamp recording was employed to record glycine-activated current (I Gly ) and Western blot was conducted to assess GlyRs subunits protein expression. Results: Application of TRPV4 agonist (GSK1016790A or 5,6-EET) increased I Gly in mouse hippocampal CA1 pyramidal neurons. This action was blocked by specific antagonists of TRPV4 (RN-1734 or HC-067047) and GlyR (strychnine), indicating that activation of TRPV4 increases strychnine-sensitive GlyR function in mouse hippocampal pyramidal neurons. GSK1016790A-induced increase in I Gly was significantly attenuated by protein kinase C (PKC) (BIM II or D-sphingosine) or calcium/calmodulin-dependent protein kinase II (CaMKII) (KN-62 or KN-93) antagonists but was unaffected by protein kinase A or protein tyrosine kinase antagonists. Finally, hippocampal protein levels of GlyR α1 α2, α3 and β subunits were not changed by treatment with GSK1016790A for 30 min or 1 h, but GlyR α2, α3 and β subunits protein levels increased in mice that were intracerebroventricularly (icv.) injected with GSK1016790A for 5 d. Conclusion: Activation of TRPV4 increases GlyR function and expression, and PKC and CaMKII signaling pathways are involved in TRPV4 activation-induced increase in I Gly . This study indicates that GlyRs may be effective targets for TRPV4-induced modulation of hippocampal inhibitory neurotransmission. |
---|---|
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.1159/000487350 |