Class-Aware Fully Convolutional Gaussian and Poisson Denoising

We propose a fully convolutional neural-network architecture for image denoising which is simple yet powerful. Its structure allows to exploit the gradual nature of the denoising process, in which the shallow layers handle local noise statistics, while deeper layers recover edges and enhance texture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-11, Vol.27 (11), p.5707-5722
Hauptverfasser: Remez, Tal, Litany, Or, Giryes, Raja, Bronstein, Alex M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a fully convolutional neural-network architecture for image denoising which is simple yet powerful. Its structure allows to exploit the gradual nature of the denoising process, in which the shallow layers handle local noise statistics, while deeper layers recover edges and enhance textures. Our method advances the state of the art when trained for different noise levels and distributions (both Gaussian and Poisson). In addition, we show that making the denoiser class-aware by exploiting semantic class information boosts the performance, enhances the textures, and reduces the artifacts.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2018.2859044