Benchmarking of 3-D MOSFET Architectures: Focus on the Impact of Surface Roughness and Self-Heating
Tremendous improvements in the fabrication technology have allowed to scale the physical dimensions of the transistors and also to develop different promising 3-D architectures that may allow continuing Moore's law. In this paper, we perform a comparative delay analysis of different 3-D device...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2018-09, Vol.65 (9), p.3646-3653 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tremendous improvements in the fabrication technology have allowed to scale the physical dimensions of the transistors and also to develop different promising 3-D architectures that may allow continuing Moore's law. In this paper, we perform a comparative delay analysis of different 3-D device architectures and study the impact of surface roughness and self-heating on the on-current using a comprehensive in-house simulation framework comprising Schrödinger, Poisson, and Boltzmann transport equation solvers and comprising relevant scattering mechanisms and self-heating. Our results highlight that parasitic capacitance can alter the relative ranking of the architectures from delay point of view. We demonstrate that surface roughness can cause architecture and material-dependent current degradation, and hence, it is necessary to account for it in simulation-based benchmarking different architectures. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2018.2857509 |