High-Density SOT-MRAM Based on Shared Bitline Structure

This brief proposes a new design technique for spin-orbit torque magnetic random access memory (SOT-MRAM), suitable for high-density and low-power on-chip cache applications. A bitline of the proposed memory bit cell is shared with that of an adjacent bit cell leading to a reduction in the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2018-08, Vol.26 (8), p.1600-1603
Hauptverfasser: Seo, Yeongkyo, Roy, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This brief proposes a new design technique for spin-orbit torque magnetic random access memory (SOT-MRAM), suitable for high-density and low-power on-chip cache applications. A bitline of the proposed memory bit cell is shared with that of an adjacent bit cell leading to a reduction in the number of metals along the column direction. This results in higher integration density due to improved metal pitch limited region. The proposed memory can optimize the bit-cell area by aggressively reducing the size of write access transistor, since SOT-based switching operation of SOT devices translates to smaller size of write access transistor. Furthermore, the proposed SOT-MRAM still retains the advantages of SOT-MRAM such as low write energy dissipation, high read-disturb margin, and improved reliability of magnetic tunnel junction. In comparison with the conventional SOT-MRAM bit cells, our proposed MRAM bit cell can have 20% less bit-cell area. Even compared with the standard STT-MRAM, our proposed bit cell still achieves higher integration density. Moreover, the shared bitline SOT-MRAM achieves > 6\times lower write power and higher read-disturb margin than does the STT-MRAM.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2018.2822841