Reduced graphene oxide-encapsulated mesoporous silica as sulfur host for lithium–sulfur battery
With up to fivefold higher in energy density vs. lithium-ion battery, lithium–sulfur (Li–S) battery is a compelling energy storage system, complemented by a very low cost of sulfur. However, current Li–S cells face the capacity decay caused by the dissolution of lithium polysulfides. In this work, a...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2018-11, Vol.22 (11), p.3557-3568 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With up to fivefold higher in energy density vs. lithium-ion battery, lithium–sulfur (Li–S) battery is a compelling energy storage system, complemented by a very low cost of sulfur. However, current Li–S cells face the capacity decay caused by the dissolution of lithium polysulfides. In this work, a new material concept, namely the “layer @ adsorbent” is introduced to address the capacity fading problem. This architecture utilizes mesoporous SiO
2
holding sulfur and polysulfides and the whole S fused SiO
2
was intimately encapsulated by reduced graphene oxide (RGO). Benefiting from the enhanced capillary force from SiO
2
, as well as the improved conductivity from RGO chamber, this “layer @ adsorbent” architecture could easily spread and adsorb polysulfides. The initial discharge capacity is approaching its theoretical capacity (1567 mAh g
−1
at 0.1 C). A stable cycle performance over 500 cycles is demonstrated with the capacity loss of merely about 0.05% per cycle. Additionally, the cathode with higher sulfur content (67%) delivers a stable reversible capacity (400 mAh g
−1
) over 500 cycles at higher current of 2 C.
Graphical abstract
ᅟ |
---|---|
ISSN: | 1432-8488 1433-0768 |
DOI: | 10.1007/s10008-018-4059-z |