Application of PeakForce tapping mode of atomic force microscope to characterize nanomechanical properties of organic matter of the Bakken Shale

Organic-rich shale, which is a heterogeneous material, has been studied extensively from various perspectives. Among all the components that constitute shale, organic matter is less known in regards to its mechanical properties. Since organic matter is relatively the softer part compared to inorgani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2018-12, Vol.233, p.894-910
Hauptverfasser: Li, Chunxiao, Ostadhassan, Mehdi, Guo, Senli, Gentzis, Thomas, Kong, Lingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic-rich shale, which is a heterogeneous material, has been studied extensively from various perspectives. Among all the components that constitute shale, organic matter is less known in regards to its mechanical properties. Since organic matter is relatively the softer part compared to inorganic minerals, high concentrations of it can have a significant impact on bulk mechanical properties of the rock, which can affect field operations such as hydraulic fracturing. In this study, four shale samples from the Bakken Formation in Williston Basin, North Dakota, were examined by a combination of experimental methods including X-ray diffraction (XRD), Rock-Eval pyrolysis, optical and scanning electron microscopy (SEM) along with atomic force microscope (AFM). PeakForce Quantitative Nano-mechanical Mapping mode in AFM was used particularly, to map the modulus of organic matter in nano-scale. XRD analysis showed that quartz and clays are the main constituent minerals in the shale samples. Geochemical results showed that all samples are extremely organic-rich, and the organic matter is mostly type II, varying from thermally immature to oil generation window. Elastic properties test results demonstrated that surface topographic features including pores, microfractures and grain boundaries would have a negative impact on AFM data, and a data filtering procedure was conducted on AFM data to get rid of wrong values. The elastic modulus of identified organic matter (bitumen and micrinite) was measured in the range of 7–23 GPa with a significant heterogeneity in a single studied organic particle and dependent upon the type of organic particle.
ISSN:0016-2361
1873-7153
DOI:10.1016/j.fuel.2018.06.021