Joint Global and Local Discriminant Embedding for Multi-fault Process Monitoring and Fault Classification

This paper proposes a new manifold learning-based scheme for multi-fault detection and classification, which utilizes local and nonlocal embedding method to build a statistic index for fault detection and subsequently develops a joint global and local discriminant embedding (GLDE) approach to discov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2018-11, Vol.43 (11), p.5859-5869
Hauptverfasser: Lu, Chunhong, Wang, Jiehua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new manifold learning-based scheme for multi-fault detection and classification, which utilizes local and nonlocal embedding method to build a statistic index for fault detection and subsequently develops a joint global and local discriminant embedding (GLDE) approach to discover the discriminant features of multiple faults for fault classification. The proposed GLDE approach can capture the global and local/nonlocal structure information of complicated data and obtain the concise discriminant information for classification. Compared with the conventional Fisher discriminant analysis method, GLDE has a strong discriminant power and provides better monitoring results for complex multi-fault Tennessee Eastman process.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-018-3072-y