Joint Global and Local Discriminant Embedding for Multi-fault Process Monitoring and Fault Classification
This paper proposes a new manifold learning-based scheme for multi-fault detection and classification, which utilizes local and nonlocal embedding method to build a statistic index for fault detection and subsequently develops a joint global and local discriminant embedding (GLDE) approach to discov...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2018-11, Vol.43 (11), p.5859-5869 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a new manifold learning-based scheme for multi-fault detection and classification, which utilizes local and nonlocal embedding method to build a statistic index for fault detection and subsequently develops a joint global and local discriminant embedding (GLDE) approach to discover the discriminant features of multiple faults for fault classification. The proposed GLDE approach can capture the global and local/nonlocal structure information of complicated data and obtain the concise discriminant information for classification. Compared with the conventional Fisher discriminant analysis method, GLDE has a strong discriminant power and provides better monitoring results for complex multi-fault Tennessee Eastman process. |
---|---|
ISSN: | 2193-567X 1319-8025 2191-4281 |
DOI: | 10.1007/s13369-018-3072-y |