Mean value of the class number in function fields revisited

In this paper an asymptotic formula for the sum ∑ L ( 1 , χ ) is established for the family of quadratic Dirichlet L -functions over the rational function field over a finite field F q with q fixed. Using the recent techniques developed by Florea we obtain an extra lower order terms that was never b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2018-12, Vol.187 (4), p.577-602
Hauptverfasser: Andrade, Julio C., Jung, Hwanyup
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper an asymptotic formula for the sum ∑ L ( 1 , χ ) is established for the family of quadratic Dirichlet L -functions over the rational function field over a finite field F q with q fixed. Using the recent techniques developed by Florea we obtain an extra lower order terms that was never been predicted in number fields and function fields. As a corollary, we obtain a formula for the average of the class number over function fields which also contains strenuous lower order terms and so improving on previous results of Hoffstein and Rosen.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-018-1162-2