Mean value of the class number in function fields revisited
In this paper an asymptotic formula for the sum ∑ L ( 1 , χ ) is established for the family of quadratic Dirichlet L -functions over the rational function field over a finite field F q with q fixed. Using the recent techniques developed by Florea we obtain an extra lower order terms that was never b...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2018-12, Vol.187 (4), p.577-602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper an asymptotic formula for the sum
∑
L
(
1
,
χ
)
is established for the family of quadratic Dirichlet
L
-functions over the rational function field over a finite field
F
q
with
q
fixed. Using the recent techniques developed by Florea we obtain an extra lower order terms that was never been predicted in number fields and function fields. As a corollary, we obtain a formula for the average of the class number over function fields which also contains strenuous lower order terms and so improving on previous results of Hoffstein and Rosen. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-018-1162-2 |