Burmester theory in Cayley–Klein planes with affine base

In this paper, we study the Burmester theory in Euclidean, Galilean and pseudo-Euclidean planes and extend the classical Burmester theory to the Cayley–Klein planes with affine base by a unified method. For this purpose, we use the generalized complex numbers and define a generalized form of Bottema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2018-12, Vol.109 (3), p.1-12, Article 45
Hauptverfasser: Eren, Kemal, Ersoy, Soley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the Burmester theory in Euclidean, Galilean and pseudo-Euclidean planes and extend the classical Burmester theory to the Cayley–Klein planes with affine base by a unified method. For this purpose, we use the generalized complex numbers and define a generalized form of Bottema’s instantaneous invariants. By this way, we expose the instantaneous geometric properties of motion of rigid bodies in the Cayley–Klein planes with affine base.
ISSN:0047-2468
1420-8997
DOI:10.1007/s00022-018-0450-2