Burmester theory in Cayley–Klein planes with affine base
In this paper, we study the Burmester theory in Euclidean, Galilean and pseudo-Euclidean planes and extend the classical Burmester theory to the Cayley–Klein planes with affine base by a unified method. For this purpose, we use the generalized complex numbers and define a generalized form of Bottema...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2018-12, Vol.109 (3), p.1-12, Article 45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the Burmester theory in Euclidean, Galilean and pseudo-Euclidean planes and extend the classical Burmester theory to the Cayley–Klein planes with affine base by a unified method. For this purpose, we use the generalized complex numbers and define a generalized form of Bottema’s instantaneous invariants. By this way, we expose the instantaneous geometric properties of motion of rigid bodies in the Cayley–Klein planes with affine base. |
---|---|
ISSN: | 0047-2468 1420-8997 |
DOI: | 10.1007/s00022-018-0450-2 |