Counting Borel Orbits in Symmetric Spaces of Types BI and CII
This is a continuation of our combinatorial program on the enumeration of Borel orbits in symmetric spaces of classical types. Here, we determine the generating series the numbers of Borel orbits in SO 2 n + 1 / S ( O 2 p × O 2 q + 1 ) (type BI ) and in Sp n / Sp p × Sp q (type CII ). In addition, w...
Gespeichert in:
Veröffentlicht in: | Arnold mathematical journal 2018-10, Vol.4 (2), p.213-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is a continuation of our combinatorial program on the enumeration of Borel orbits in symmetric spaces of classical types. Here, we determine the generating series the numbers of Borel orbits in
SO
2
n
+
1
/
S
(
O
2
p
×
O
2
q
+
1
)
(type
BI
) and in
Sp
n
/
Sp
p
×
Sp
q
(type
CII
). In addition, we explore relations to lattice path enumeration. |
---|---|
ISSN: | 2199-6792 2199-6806 |
DOI: | 10.1007/s40598-018-0092-3 |