Counting Borel Orbits in Symmetric Spaces of Types BI and CII

This is a continuation of our combinatorial program on the enumeration of Borel orbits in symmetric spaces of classical types. Here, we determine the generating series the numbers of Borel orbits in SO 2 n + 1 / S ( O 2 p × O 2 q + 1 ) (type BI ) and in Sp n / Sp p × Sp q (type CII ). In addition, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arnold mathematical journal 2018-10, Vol.4 (2), p.213-250
Hauptverfasser: Can, Mahir Bilen, Uğurlu, Özlem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is a continuation of our combinatorial program on the enumeration of Borel orbits in symmetric spaces of classical types. Here, we determine the generating series the numbers of Borel orbits in SO 2 n + 1 / S ( O 2 p × O 2 q + 1 ) (type BI ) and in Sp n / Sp p × Sp q (type CII ). In addition, we explore relations to lattice path enumeration.
ISSN:2199-6792
2199-6806
DOI:10.1007/s40598-018-0092-3