The Study of Soundproofing Properties of Wood Polymer-Sand Composite

The development of woodworking and furniture industry in the past twentieth century was largely due to the launch of the production of a large group of artificial materials, now classified as wood-polymer composites. Diversity and renewability of the resource base, convenience and cost-effectiveness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state phenomena 2018-10, Vol.284, p.993-998, Article 993
Hauptverfasser: Storodubtseva, T.N., Aksomitny, A.A., Saldaev, V.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of woodworking and furniture industry in the past twentieth century was largely due to the launch of the production of a large group of artificial materials, now classified as wood-polymer composites. Diversity and renewability of the resource base, convenience and cost-effectiveness of wood-polymer composites (WPC) are the main prerequisites for the development of this group of materials. Fillers in thermoplastic wood-polymer composites may be present in a variety of forms. At this stage industrial WPCs are manufactured mainly from small fractions - wood flour and sawdust. This provides a high technological plasticity of production, namely - the possibility of manufacturing products by extrusion and casting methods, a variety of geometric shapes and even with a small thickness of the walls of the structures. However, this is true if we focus on the maximum possible mechanical properties and accuracy of geometric shapes of finished products. If we focus production on the manufacture of sound-proofing WPC, then almost any wood waste can be used for the filling of such composites. To study and predict sound-proofing properties of wood polymer-sand composite (WPSC), a corresponding mathematical model was developed. It is found that with an increase in the thickness of the polymer-sand coating, the coefficient of sound proof significantly increases. For example, a coating thickness of only 4 mm, increases the sound-proofing properties of a wood sample from 16 to 35 dB, thus the sound-proofing properties of the WPSC are improved by half compared to pure wood.
ISSN:1012-0394
1662-9779
1662-9779
DOI:10.4028/www.scientific.net/SSP.284.993