Polymer Nanofibers Incorporated with Silver Nanoparticles: Thermal Properties
In this study, photothermal techniques were used to investigate the thermal diffusivity, effusivity, and conductivity of samples based on polyvinylidene difluoride (PVDF) polymeric nanofibers incorporated with silver nanoparticles (Ag-NPs). Different amounts were investigated to analyze the thermal...
Gespeichert in:
Veröffentlicht in: | International journal of thermophysics 2018-11, Vol.39 (11), p.1-10, Article 130 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, photothermal techniques were used to investigate the thermal diffusivity, effusivity, and conductivity of samples based on polyvinylidene difluoride (PVDF) polymeric nanofibers incorporated with silver nanoparticles (Ag-NPs). Different amounts were investigated to analyze the thermal effect of Ag-NPs on the polymeric matrix. The Ag-NPs were synthesized by sol–gel and microwave-assisted methods, which have advantages over conventional synthesis methods. The composite of PVDF nanofibers and Ag-NPs was obtained by electrospinning technique while varying the processing parameters. The UV–Vis characteristic spectrum of the nanoparticles was obtained. The hydrodynamic radius of the Ag-NPs was about 16 nm, which was determined by a nanozetasizer. A ζ potential of about 0.03 mV was also measured in this system. This parameter is a measure of the magnitude of the repulsion or electrical attraction between particles and is one of the main measurements to determine the stability of nanoparticles. The morphologies were observed by scanning electron microscopy and showed cylindrical fibers with diameters ranging from 159 nm to 658 nm. Transmission electron microscopy was used to observe the incorporation and distribution of Ag-NPs in the PVDF nanofibers. The thermal effects of Ag-NPs on the polymeric matrix were determined from the thermal properties. The thermal conductivity increased from 0.12 W·m
−1
·K
−1
to 0.34 W·m
−1
·K
−1
when the Ag-NP amount was increased from 4 % to 12 % in the polymeric matrix. |
---|---|
ISSN: | 0195-928X 1572-9567 |
DOI: | 10.1007/s10765-018-2446-4 |