Approximation of Fractals by Discrete Graphs: Norm Resolvent and Spectral Convergence

We show a norm convergence result for the Laplacian on a class of pcf self-similar fractals with arbitrary Borel regular probability measure which can be approximated by a sequence of finite-dimensional weighted graph Laplacians. As a consequence other functions of the Laplacians (heat operator, spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2018-12, Vol.90 (6), p.1-30, Article 68
Hauptverfasser: Post, Olaf, Simmer, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show a norm convergence result for the Laplacian on a class of pcf self-similar fractals with arbitrary Borel regular probability measure which can be approximated by a sequence of finite-dimensional weighted graph Laplacians. As a consequence other functions of the Laplacians (heat operator, spectral projections etc.) converge as well in operator norm. One also deduces convergence of the spectrum and the eigenfunctions in energy norm.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-018-2492-0