Effects of large-scale wetland loss on network connectivity of the Rainwater Basin, Nebraska

Context The Rainwater Basin region in south-central Nebraska supports a complex network of spatially-isolated wetlands that harbor diverse floral and faunal communities. Since European settlement, many wetlands have been lost from the network, which has increased distances among remaining wetlands....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landscape ecology 2018-11, Vol.33 (11), p.1939-1951
Hauptverfasser: Verheijen, Bram H. F., Varner, Dana M., Haukos, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context The Rainwater Basin region in south-central Nebraska supports a complex network of spatially-isolated wetlands that harbor diverse floral and faunal communities. Since European settlement, many wetlands have been lost from the network, which has increased distances among remaining wetlands. As a result, populations of wildlife species with limited dispersal capabilities may have become isolated and face greater local extinction risks. Objectives We compared the pre-European settlement and current extent of the Rainwater Basin network to assess the effects of wetland losses on network connectivity for a range of maximum dispersal distances. Methods We constructed network models for a range of maximum dispersal distances and calculated network metrics to assess changes in network connectivity and the relative importance of individual wetlands in regulating flow. Results Since European settlement, the number of wetlands in the Rainwater Basin has decreased by > 90%. The average distance to the nearest neighboring wetland has increased by 150% to ~ 1.2 km, and the dispersal distance necessary to travel throughout the whole network has increased from 3.5 to 10.0 km. Last, relative importance of individual wetlands depended on the maximum dispersal distance. Which wetlands to preserve to maintain connectivity might therefore depend on the dispersal capabilities of the species or taxa of interest. Conclusions To preserve a broad range of biodiversity, conservation efforts should focus on preserving dense clusters of wetlands at fine spatial scales to maintain current levels of network connectivity, and restoring connections between clusters to facilitate long-range dispersal of species with limited dispersal capabilities.
ISSN:0921-2973
1572-9761
DOI:10.1007/s10980-018-0721-1