Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer
Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna pr...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2017-06, Vol.24 (6) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 24 |
creator | Hiramoto, Kenta Nakagawa, Yuichi Koizumi, Hiroyuki Takao, Yoshinori |
description | Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the
E
×
B
drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This
E
×
B
drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber. |
doi_str_mv | 10.1063/1.4989734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116120706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116120706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</originalsourceid><addsrcrecordid>eNqdkE1KA0EQhQdRMEYX3qDBlcJo_8_MUkP8AcGNgruhnK42HZKZ2N2JmJVbT-CBvIknsWMC7t1UPXgfr6iXZYeMnjKqxRk7lVVZFUJuZT1GyyovdCG3V7qgudbycTfbC2FMKZValb1sObQWmxhIZ8nw-_3j6zONC2K8s5F0LcFJcn0S0UMbZp2PBBrfhUDiCMkUnluMriHW4cQQ1xIgU9c6iHOfXJfIV1ggMS40I_DPSFqcp6SJW6Lfz3YsTAIebHY_e7gc3g-u89u7q5vB-W3eiLKQuZD8SUmlKiOAGsVRcGUFGtQGsDS0KqSS3FhOuSgBnigzGgrkpVIUOGjRz47WuTPfvcwxxHrczX2bTtacMc14qmZFHa-p3-882nrm3RT8W81ovaq2ZvWm2sSerNnQuAjRde3_4EXn_8B6Zqz4AV4visw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116120706</pqid></control><display><type>article</type><title>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hiramoto, Kenta ; Nakagawa, Yuichi ; Koizumi, Hiroyuki ; Takao, Yoshinori</creator><creatorcontrib>Hiramoto, Kenta ; Nakagawa, Yuichi ; Koizumi, Hiroyuki ; Takao, Yoshinori</creatorcontrib><description>Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the
E
×
B
drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This
E
×
B
drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4989734</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Electric fields ; Electron density ; Electron drift instability ; Electron transport ; Hall thrusters ; Magnetic fields ; Magnetism ; Mathematical models ; Microwave discharge ; Orifices ; Particle in cell technique ; Permanent magnets ; Plasma ; Plasma physics ; Three dimensional models ; Xenon</subject><ispartof>Physics of plasmas, 2017-06, Vol.24 (6)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</citedby><cites>FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</cites><orcidid>0000-0002-3468-8857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4989734$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Hiramoto, Kenta</creatorcontrib><creatorcontrib>Nakagawa, Yuichi</creatorcontrib><creatorcontrib>Koizumi, Hiroyuki</creatorcontrib><creatorcontrib>Takao, Yoshinori</creatorcontrib><title>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</title><title>Physics of plasmas</title><description>Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the
E
×
B
drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This
E
×
B
drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.</description><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Electron density</subject><subject>Electron drift instability</subject><subject>Electron transport</subject><subject>Hall thrusters</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Microwave discharge</subject><subject>Orifices</subject><subject>Particle in cell technique</subject><subject>Permanent magnets</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Three dimensional models</subject><subject>Xenon</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkE1KA0EQhQdRMEYX3qDBlcJo_8_MUkP8AcGNgruhnK42HZKZ2N2JmJVbT-CBvIknsWMC7t1UPXgfr6iXZYeMnjKqxRk7lVVZFUJuZT1GyyovdCG3V7qgudbycTfbC2FMKZValb1sObQWmxhIZ8nw-_3j6zONC2K8s5F0LcFJcn0S0UMbZp2PBBrfhUDiCMkUnluMriHW4cQQ1xIgU9c6iHOfXJfIV1ggMS40I_DPSFqcp6SJW6Lfz3YsTAIebHY_e7gc3g-u89u7q5vB-W3eiLKQuZD8SUmlKiOAGsVRcGUFGtQGsDS0KqSS3FhOuSgBnigzGgrkpVIUOGjRz47WuTPfvcwxxHrczX2bTtacMc14qmZFHa-p3-882nrm3RT8W81ovaq2ZvWm2sSerNnQuAjRde3_4EXn_8B6Zqz4AV4visw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Hiramoto, Kenta</creator><creator>Nakagawa, Yuichi</creator><creator>Koizumi, Hiroyuki</creator><creator>Takao, Yoshinori</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3468-8857</orcidid></search><sort><creationdate>20170601</creationdate><title>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</title><author>Hiramoto, Kenta ; Nakagawa, Yuichi ; Koizumi, Hiroyuki ; Takao, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Electron density</topic><topic>Electron drift instability</topic><topic>Electron transport</topic><topic>Hall thrusters</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Microwave discharge</topic><topic>Orifices</topic><topic>Particle in cell technique</topic><topic>Permanent magnets</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Three dimensional models</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiramoto, Kenta</creatorcontrib><creatorcontrib>Nakagawa, Yuichi</creatorcontrib><creatorcontrib>Koizumi, Hiroyuki</creatorcontrib><creatorcontrib>Takao, Yoshinori</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiramoto, Kenta</au><au>Nakagawa, Yuichi</au><au>Koizumi, Hiroyuki</au><au>Takao, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</atitle><jtitle>Physics of plasmas</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the
E
×
B
drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This
E
×
B
drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4989734</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3468-8857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2017-06, Vol.24 (6) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2116120706 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Computer simulation Electric fields Electron density Electron drift instability Electron transport Hall thrusters Magnetic fields Magnetism Mathematical models Microwave discharge Orifices Particle in cell technique Permanent magnets Plasma Plasma physics Three dimensional models Xenon |
title | Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20E%E2%80%89%C3%97%E2%80%89B%20drift%20on%20electron%20transport%20across%20the%20magnetic%20field%20in%20a%20miniature%20microwave%20discharge%20neutralizer&rft.jtitle=Physics%20of%20plasmas&rft.au=Hiramoto,%20Kenta&rft.date=2017-06-01&rft.volume=24&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4989734&rft_dat=%3Cproquest_cross%3E2116120706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116120706&rft_id=info:pmid/&rfr_iscdi=true |