Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer

Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2017-06, Vol.24 (6)
Hauptverfasser: Hiramoto, Kenta, Nakagawa, Yuichi, Koizumi, Hiroyuki, Takao, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of plasmas
container_volume 24
creator Hiramoto, Kenta
Nakagawa, Yuichi
Koizumi, Hiroyuki
Takao, Yoshinori
description Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the E  ×  B drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This E  ×  B drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.
doi_str_mv 10.1063/1.4989734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116120706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116120706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</originalsourceid><addsrcrecordid>eNqdkE1KA0EQhQdRMEYX3qDBlcJo_8_MUkP8AcGNgruhnK42HZKZ2N2JmJVbT-CBvIknsWMC7t1UPXgfr6iXZYeMnjKqxRk7lVVZFUJuZT1GyyovdCG3V7qgudbycTfbC2FMKZValb1sObQWmxhIZ8nw-_3j6zONC2K8s5F0LcFJcn0S0UMbZp2PBBrfhUDiCMkUnluMriHW4cQQ1xIgU9c6iHOfXJfIV1ggMS40I_DPSFqcp6SJW6Lfz3YsTAIebHY_e7gc3g-u89u7q5vB-W3eiLKQuZD8SUmlKiOAGsVRcGUFGtQGsDS0KqSS3FhOuSgBnigzGgrkpVIUOGjRz47WuTPfvcwxxHrczX2bTtacMc14qmZFHa-p3-882nrm3RT8W81ovaq2ZvWm2sSerNnQuAjRde3_4EXn_8B6Zqz4AV4visw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116120706</pqid></control><display><type>article</type><title>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hiramoto, Kenta ; Nakagawa, Yuichi ; Koizumi, Hiroyuki ; Takao, Yoshinori</creator><creatorcontrib>Hiramoto, Kenta ; Nakagawa, Yuichi ; Koizumi, Hiroyuki ; Takao, Yoshinori</creatorcontrib><description>Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the E  ×  B drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This E  ×  B drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4989734</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Electric fields ; Electron density ; Electron drift instability ; Electron transport ; Hall thrusters ; Magnetic fields ; Magnetism ; Mathematical models ; Microwave discharge ; Orifices ; Particle in cell technique ; Permanent magnets ; Plasma ; Plasma physics ; Three dimensional models ; Xenon</subject><ispartof>Physics of plasmas, 2017-06, Vol.24 (6)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</citedby><cites>FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</cites><orcidid>0000-0002-3468-8857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4989734$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Hiramoto, Kenta</creatorcontrib><creatorcontrib>Nakagawa, Yuichi</creatorcontrib><creatorcontrib>Koizumi, Hiroyuki</creatorcontrib><creatorcontrib>Takao, Yoshinori</creatorcontrib><title>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</title><title>Physics of plasmas</title><description>Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the E  ×  B drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This E  ×  B drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.</description><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Electron density</subject><subject>Electron drift instability</subject><subject>Electron transport</subject><subject>Hall thrusters</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Microwave discharge</subject><subject>Orifices</subject><subject>Particle in cell technique</subject><subject>Permanent magnets</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Three dimensional models</subject><subject>Xenon</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkE1KA0EQhQdRMEYX3qDBlcJo_8_MUkP8AcGNgruhnK42HZKZ2N2JmJVbT-CBvIknsWMC7t1UPXgfr6iXZYeMnjKqxRk7lVVZFUJuZT1GyyovdCG3V7qgudbycTfbC2FMKZValb1sObQWmxhIZ8nw-_3j6zONC2K8s5F0LcFJcn0S0UMbZp2PBBrfhUDiCMkUnluMriHW4cQQ1xIgU9c6iHOfXJfIV1ggMS40I_DPSFqcp6SJW6Lfz3YsTAIebHY_e7gc3g-u89u7q5vB-W3eiLKQuZD8SUmlKiOAGsVRcGUFGtQGsDS0KqSS3FhOuSgBnigzGgrkpVIUOGjRz47WuTPfvcwxxHrczX2bTtacMc14qmZFHa-p3-882nrm3RT8W81ovaq2ZvWm2sSerNnQuAjRde3_4EXn_8B6Zqz4AV4visw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Hiramoto, Kenta</creator><creator>Nakagawa, Yuichi</creator><creator>Koizumi, Hiroyuki</creator><creator>Takao, Yoshinori</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3468-8857</orcidid></search><sort><creationdate>20170601</creationdate><title>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</title><author>Hiramoto, Kenta ; Nakagawa, Yuichi ; Koizumi, Hiroyuki ; Takao, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-342b54559d3a0d52e325f3ede6dae8d0974542df20238aab01d6a7e28550a2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Electron density</topic><topic>Electron drift instability</topic><topic>Electron transport</topic><topic>Hall thrusters</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Microwave discharge</topic><topic>Orifices</topic><topic>Particle in cell technique</topic><topic>Permanent magnets</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Three dimensional models</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiramoto, Kenta</creatorcontrib><creatorcontrib>Nakagawa, Yuichi</creatorcontrib><creatorcontrib>Koizumi, Hiroyuki</creatorcontrib><creatorcontrib>Takao, Yoshinori</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiramoto, Kenta</au><au>Nakagawa, Yuichi</au><au>Koizumi, Hiroyuki</au><au>Takao, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer</atitle><jtitle>Physics of plasmas</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the E  ×  B drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This E  ×  B drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4989734</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3468-8857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2017-06, Vol.24 (6)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2116120706
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computer simulation
Electric fields
Electron density
Electron drift instability
Electron transport
Hall thrusters
Magnetic fields
Magnetism
Mathematical models
Microwave discharge
Orifices
Particle in cell technique
Permanent magnets
Plasma
Plasma physics
Three dimensional models
Xenon
title Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20E%E2%80%89%C3%97%E2%80%89B%20drift%20on%20electron%20transport%20across%20the%20magnetic%20field%20in%20a%20miniature%20microwave%20discharge%20neutralizer&rft.jtitle=Physics%20of%20plasmas&rft.au=Hiramoto,%20Kenta&rft.date=2017-06-01&rft.volume=24&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4989734&rft_dat=%3Cproquest_cross%3E2116120706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116120706&rft_id=info:pmid/&rfr_iscdi=true