Effects of E × B drift on electron transport across the magnetic field in a miniature microwave discharge neutralizer

Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2017-06, Vol.24 (6)
Hauptverfasser: Hiramoto, Kenta, Nakagawa, Yuichi, Koizumi, Hiroyuki, Takao, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the E  ×  B drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This E  ×  B drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4989734