Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions
We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values o...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2017-06, Vol.58 (6), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 58 |
creator | Cherroud, Othmane Yahiaoui, Sid-Ahmed Bentaiba, Mustapha |
description | We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values of position and momentum operators are obtained analytically in order to verify the universality of Heisenberg’s uncertainty principle. |
doi_str_mv | 10.1063/1.4984310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2116119518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927469073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-866e6f9bc7cdd682e1daa73329caa870d68943d886d22c2c0523566b58e4e68f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgSmFq_iaTLKVoFQpuFJdDmtypKe1MTTLVuvI1fD2fxBnadVf3cvjuOdyD0CUlI0okv6UjoZXglByhASVKZ4XM1TEaEMJYxoRSp-gsxgUhlCohBuhrAjUEs_Tf4PDUzFsIAfC6WW7rZuXNMuJPn947IfrkmzpzsIbaQZ0wVBXY5DeAVyZGvPGx3dtsvMFvft75_v38Rux8TMHP2v4eV21t-yWeo5Oqs4eL_Ryi14f7l_FjNn2ePI3vppnljKRMSQmy0jNbWOekYkCdMQXnTFtjVEE6TQvulJKOMcssyRnPpZzlCgRIVfEhutr5rkPz0UJM5aJpQ91FloxSSanOqTpEUc0KITXpQofoekfZ0MQYoCrXwa9M2JaUlH39JS339XfszY6N1ifTv3wA_ge-rYdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927469073</pqid></control><display><type>article</type><title>Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cherroud, Othmane ; Yahiaoui, Sid-Ahmed ; Bentaiba, Mustapha</creator><creatorcontrib>Cherroud, Othmane ; Yahiaoui, Sid-Ahmed ; Bentaiba, Mustapha</creatorcontrib><description>We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values of position and momentum operators are obtained analytically in order to verify the universality of Heisenberg’s uncertainty principle.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4984310</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Distribution functions ; Exact solutions ; Functions (mathematics) ; Physics ; Polynomials ; Quantum physics ; Schrodinger equation ; Uncertainty ; Wigner distribution</subject><ispartof>Journal of mathematical physics, 2017-06, Vol.58 (6), p.1</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Jun 2017</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-866e6f9bc7cdd682e1daa73329caa870d68943d886d22c2c0523566b58e4e68f3</citedby><cites>FETCH-LOGICAL-c320t-866e6f9bc7cdd682e1daa73329caa870d68943d886d22c2c0523566b58e4e68f3</cites><orcidid>0000-0002-7171-5922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4984310$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4511,27923,27924,76255</link.rule.ids></links><search><creatorcontrib>Cherroud, Othmane</creatorcontrib><creatorcontrib>Yahiaoui, Sid-Ahmed</creatorcontrib><creatorcontrib>Bentaiba, Mustapha</creatorcontrib><title>Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions</title><title>Journal of mathematical physics</title><description>We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values of position and momentum operators are obtained analytically in order to verify the universality of Heisenberg’s uncertainty principle.</description><subject>Distribution functions</subject><subject>Exact solutions</subject><subject>Functions (mathematics)</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Uncertainty</subject><subject>Wigner distribution</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgSmFq_iaTLKVoFQpuFJdDmtypKe1MTTLVuvI1fD2fxBnadVf3cvjuOdyD0CUlI0okv6UjoZXglByhASVKZ4XM1TEaEMJYxoRSp-gsxgUhlCohBuhrAjUEs_Tf4PDUzFsIAfC6WW7rZuXNMuJPn947IfrkmzpzsIbaQZ0wVBXY5DeAVyZGvPGx3dtsvMFvft75_v38Rux8TMHP2v4eV21t-yWeo5Oqs4eL_Ryi14f7l_FjNn2ePI3vppnljKRMSQmy0jNbWOekYkCdMQXnTFtjVEE6TQvulJKOMcssyRnPpZzlCgRIVfEhutr5rkPz0UJM5aJpQ91FloxSSanOqTpEUc0KITXpQofoekfZ0MQYoCrXwa9M2JaUlH39JS339XfszY6N1ifTv3wA_ge-rYdk</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Cherroud, Othmane</creator><creator>Yahiaoui, Sid-Ahmed</creator><creator>Bentaiba, Mustapha</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7171-5922</orcidid></search><sort><creationdate>201706</creationdate><title>Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions</title><author>Cherroud, Othmane ; Yahiaoui, Sid-Ahmed ; Bentaiba, Mustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-866e6f9bc7cdd682e1daa73329caa870d68943d886d22c2c0523566b58e4e68f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Distribution functions</topic><topic>Exact solutions</topic><topic>Functions (mathematics)</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Uncertainty</topic><topic>Wigner distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherroud, Othmane</creatorcontrib><creatorcontrib>Yahiaoui, Sid-Ahmed</creatorcontrib><creatorcontrib>Bentaiba, Mustapha</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherroud, Othmane</au><au>Yahiaoui, Sid-Ahmed</au><au>Bentaiba, Mustapha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2017-06</date><risdate>2017</risdate><volume>58</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values of position and momentum operators are obtained analytically in order to verify the universality of Heisenberg’s uncertainty principle.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4984310</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7171-5922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2017-06, Vol.58 (6), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2116119518 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Distribution functions Exact solutions Functions (mathematics) Physics Polynomials Quantum physics Schrodinger equation Uncertainty Wigner distribution |
title | Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Laguerre%20polynomials%20with%20position-dependent%20effective%20mass%20visualized%20via%20Wigner%E2%80%99s%20distribution%20functions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Cherroud,%20Othmane&rft.date=2017-06&rft.volume=58&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4984310&rft_dat=%3Cproquest_scita%3E1927469073%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927469073&rft_id=info:pmid/&rfr_iscdi=true |