Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions
We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values o...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2017-06, Vol.58 (6), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values of position and momentum operators are obtained analytically in order to verify the universality of Heisenberg’s uncertainty principle. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4984310 |