Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions

We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2017-06, Vol.58 (6), p.1
Hauptverfasser: Cherroud, Othmane, Yahiaoui, Sid-Ahmed, Bentaiba, Mustapha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of the position-dependent effective mass Schrödinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values of position and momentum operators are obtained analytically in order to verify the universality of Heisenberg’s uncertainty principle.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4984310