Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air

In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2017-07, Vol.24 (7)
Hauptverfasser: Huang, Dong, Yang, Lanjun, Guo, Haishan, Zhang, Zhiyuan, Jiang, Hongqiu, Xu, Haipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physics of plasmas
container_volume 24
creator Huang, Dong
Yang, Lanjun
Guo, Haishan
Zhang, Zhiyuan
Jiang, Hongqiu
Xu, Haipeng
description In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C 1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.
doi_str_mv 10.1063/1.4989714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116117257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116117257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</originalsourceid><addsrcrecordid>eNqd0M1KxDAQAOAiCq6rB98g4Emha9KkSXOUxT9Y8KLgLUzTtGatTUyyyr69rbvg3dMMwzczzGTZOcELgjm9JgsmKykIO8hmBFcyF1ywwykXOOecvR5nJzGuMcaMl9UsWy_fIIBOJtiYrI4IhgY1NnoTok1b5FoEKH071IFHGrztewjbSeixsTMIvO-taVDrAurd0KHoIbz_ctsNNlk3IDsgsOE0O2qhj-ZsH-fZy93t8_IhXz3dPy5vVrmmhUg5rVkJDTXAilLz2pQEJJc1yEZXJZUcl2bMDRaibmtcczYVjWlkA5JUlNF5drGb64P73JiY1NptwjCuVAUhnBBRlGJUlzulg4sxmFb5YD_G2xTBanqlImr_ytFe7WzUNsF00v_wlwt_UPmmpT8RL4NM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116117257</pqid></control><display><type>article</type><title>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huang, Dong ; Yang, Lanjun ; Guo, Haishan ; Zhang, Zhiyuan ; Jiang, Hongqiu ; Xu, Haipeng</creator><creatorcontrib>Huang, Dong ; Yang, Lanjun ; Guo, Haishan ; Zhang, Zhiyuan ; Jiang, Hongqiu ; Xu, Haipeng</creatorcontrib><description>In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C 1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4989714</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Automotive parts ; Capillary pressure ; Charging ; Delay ; Discharge ; Electric arcs ; Electric potential ; Electrical resistivity ; Energy consumption ; Ignition ; Magnetic cores ; Maintenance management ; Neon ; Plasma physics ; Statistical analysis ; Statistical methods</subject><ispartof>Physics of plasmas, 2017-07, Vol.24 (7)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</citedby><cites>FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</cites><orcidid>0000-0002-7915-8948 ; 0000-0002-7483-4329 ; 0000-0001-9347-2354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4989714$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4502,27915,27916,76145</link.rule.ids></links><search><creatorcontrib>Huang, Dong</creatorcontrib><creatorcontrib>Yang, Lanjun</creatorcontrib><creatorcontrib>Guo, Haishan</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Hongqiu</creatorcontrib><creatorcontrib>Xu, Haipeng</creatorcontrib><title>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</title><title>Physics of plasmas</title><description>In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C 1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.</description><subject>Automotive parts</subject><subject>Capillary pressure</subject><subject>Charging</subject><subject>Delay</subject><subject>Discharge</subject><subject>Electric arcs</subject><subject>Electric potential</subject><subject>Electrical resistivity</subject><subject>Energy consumption</subject><subject>Ignition</subject><subject>Magnetic cores</subject><subject>Maintenance management</subject><subject>Neon</subject><subject>Plasma physics</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAQAOAiCq6rB98g4Emha9KkSXOUxT9Y8KLgLUzTtGatTUyyyr69rbvg3dMMwzczzGTZOcELgjm9JgsmKykIO8hmBFcyF1ywwykXOOecvR5nJzGuMcaMl9UsWy_fIIBOJtiYrI4IhgY1NnoTok1b5FoEKH071IFHGrztewjbSeixsTMIvO-taVDrAurd0KHoIbz_ctsNNlk3IDsgsOE0O2qhj-ZsH-fZy93t8_IhXz3dPy5vVrmmhUg5rVkJDTXAilLz2pQEJJc1yEZXJZUcl2bMDRaibmtcczYVjWlkA5JUlNF5drGb64P73JiY1NptwjCuVAUhnBBRlGJUlzulg4sxmFb5YD_G2xTBanqlImr_ytFe7WzUNsF00v_wlwt_UPmmpT8RL4NM</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Huang, Dong</creator><creator>Yang, Lanjun</creator><creator>Guo, Haishan</creator><creator>Zhang, Zhiyuan</creator><creator>Jiang, Hongqiu</creator><creator>Xu, Haipeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7915-8948</orcidid><orcidid>https://orcid.org/0000-0002-7483-4329</orcidid><orcidid>https://orcid.org/0000-0001-9347-2354</orcidid></search><sort><creationdate>201707</creationdate><title>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</title><author>Huang, Dong ; Yang, Lanjun ; Guo, Haishan ; Zhang, Zhiyuan ; Jiang, Hongqiu ; Xu, Haipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive parts</topic><topic>Capillary pressure</topic><topic>Charging</topic><topic>Delay</topic><topic>Discharge</topic><topic>Electric arcs</topic><topic>Electric potential</topic><topic>Electrical resistivity</topic><topic>Energy consumption</topic><topic>Ignition</topic><topic>Magnetic cores</topic><topic>Maintenance management</topic><topic>Neon</topic><topic>Plasma physics</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Dong</creatorcontrib><creatorcontrib>Yang, Lanjun</creatorcontrib><creatorcontrib>Guo, Haishan</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Hongqiu</creatorcontrib><creatorcontrib>Xu, Haipeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Dong</au><au>Yang, Lanjun</au><au>Guo, Haishan</au><au>Zhang, Zhiyuan</au><au>Jiang, Hongqiu</au><au>Xu, Haipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</atitle><jtitle>Physics of plasmas</jtitle><date>2017-07</date><risdate>2017</risdate><volume>24</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C 1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4989714</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7915-8948</orcidid><orcidid>https://orcid.org/0000-0002-7483-4329</orcidid><orcidid>https://orcid.org/0000-0001-9347-2354</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2017-07, Vol.24 (7)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2116117257
source AIP Journals Complete; Alma/SFX Local Collection
subjects Automotive parts
Capillary pressure
Charging
Delay
Discharge
Electric arcs
Electric potential
Electrical resistivity
Energy consumption
Ignition
Magnetic cores
Maintenance management
Neon
Plasma physics
Statistical analysis
Statistical methods
title Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20and%20dispersity%20of%20a%20two%20gap%20capillary%20discharge%20applied%20for%20long%20spark%20gap%20ignition%20in%20air&rft.jtitle=Physics%20of%20plasmas&rft.au=Huang,%20Dong&rft.date=2017-07&rft.volume=24&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4989714&rft_dat=%3Cproquest_cross%3E2116117257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116117257&rft_id=info:pmid/&rfr_iscdi=true