Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air
In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristic...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2017-07, Vol.24 (7) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 24 |
creator | Huang, Dong Yang, Lanjun Guo, Haishan Zhang, Zhiyuan Jiang, Hongqiu Xu, Haipeng |
description | In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C
1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge. |
doi_str_mv | 10.1063/1.4989714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116117257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116117257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</originalsourceid><addsrcrecordid>eNqd0M1KxDAQAOAiCq6rB98g4Emha9KkSXOUxT9Y8KLgLUzTtGatTUyyyr69rbvg3dMMwzczzGTZOcELgjm9JgsmKykIO8hmBFcyF1ywwykXOOecvR5nJzGuMcaMl9UsWy_fIIBOJtiYrI4IhgY1NnoTok1b5FoEKH071IFHGrztewjbSeixsTMIvO-taVDrAurd0KHoIbz_ctsNNlk3IDsgsOE0O2qhj-ZsH-fZy93t8_IhXz3dPy5vVrmmhUg5rVkJDTXAilLz2pQEJJc1yEZXJZUcl2bMDRaibmtcczYVjWlkA5JUlNF5drGb64P73JiY1NptwjCuVAUhnBBRlGJUlzulg4sxmFb5YD_G2xTBanqlImr_ytFe7WzUNsF00v_wlwt_UPmmpT8RL4NM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116117257</pqid></control><display><type>article</type><title>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huang, Dong ; Yang, Lanjun ; Guo, Haishan ; Zhang, Zhiyuan ; Jiang, Hongqiu ; Xu, Haipeng</creator><creatorcontrib>Huang, Dong ; Yang, Lanjun ; Guo, Haishan ; Zhang, Zhiyuan ; Jiang, Hongqiu ; Xu, Haipeng</creatorcontrib><description>In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C
1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4989714</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Automotive parts ; Capillary pressure ; Charging ; Delay ; Discharge ; Electric arcs ; Electric potential ; Electrical resistivity ; Energy consumption ; Ignition ; Magnetic cores ; Maintenance management ; Neon ; Plasma physics ; Statistical analysis ; Statistical methods</subject><ispartof>Physics of plasmas, 2017-07, Vol.24 (7)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</citedby><cites>FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</cites><orcidid>0000-0002-7915-8948 ; 0000-0002-7483-4329 ; 0000-0001-9347-2354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4989714$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4502,27915,27916,76145</link.rule.ids></links><search><creatorcontrib>Huang, Dong</creatorcontrib><creatorcontrib>Yang, Lanjun</creatorcontrib><creatorcontrib>Guo, Haishan</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Hongqiu</creatorcontrib><creatorcontrib>Xu, Haipeng</creatorcontrib><title>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</title><title>Physics of plasmas</title><description>In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C
1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.</description><subject>Automotive parts</subject><subject>Capillary pressure</subject><subject>Charging</subject><subject>Delay</subject><subject>Discharge</subject><subject>Electric arcs</subject><subject>Electric potential</subject><subject>Electrical resistivity</subject><subject>Energy consumption</subject><subject>Ignition</subject><subject>Magnetic cores</subject><subject>Maintenance management</subject><subject>Neon</subject><subject>Plasma physics</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAQAOAiCq6rB98g4Emha9KkSXOUxT9Y8KLgLUzTtGatTUyyyr69rbvg3dMMwzczzGTZOcELgjm9JgsmKykIO8hmBFcyF1ywwykXOOecvR5nJzGuMcaMl9UsWy_fIIBOJtiYrI4IhgY1NnoTok1b5FoEKH071IFHGrztewjbSeixsTMIvO-taVDrAurd0KHoIbz_ctsNNlk3IDsgsOE0O2qhj-ZsH-fZy93t8_IhXz3dPy5vVrmmhUg5rVkJDTXAilLz2pQEJJc1yEZXJZUcl2bMDRaibmtcczYVjWlkA5JUlNF5drGb64P73JiY1NptwjCuVAUhnBBRlGJUlzulg4sxmFb5YD_G2xTBanqlImr_ytFe7WzUNsF00v_wlwt_UPmmpT8RL4NM</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Huang, Dong</creator><creator>Yang, Lanjun</creator><creator>Guo, Haishan</creator><creator>Zhang, Zhiyuan</creator><creator>Jiang, Hongqiu</creator><creator>Xu, Haipeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7915-8948</orcidid><orcidid>https://orcid.org/0000-0002-7483-4329</orcidid><orcidid>https://orcid.org/0000-0001-9347-2354</orcidid></search><sort><creationdate>201707</creationdate><title>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</title><author>Huang, Dong ; Yang, Lanjun ; Guo, Haishan ; Zhang, Zhiyuan ; Jiang, Hongqiu ; Xu, Haipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3b45ad3ea425c6be51a969ba9dc8539605ea9de077bfb0b645396eed9da918343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive parts</topic><topic>Capillary pressure</topic><topic>Charging</topic><topic>Delay</topic><topic>Discharge</topic><topic>Electric arcs</topic><topic>Electric potential</topic><topic>Electrical resistivity</topic><topic>Energy consumption</topic><topic>Ignition</topic><topic>Magnetic cores</topic><topic>Maintenance management</topic><topic>Neon</topic><topic>Plasma physics</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Dong</creatorcontrib><creatorcontrib>Yang, Lanjun</creatorcontrib><creatorcontrib>Guo, Haishan</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Hongqiu</creatorcontrib><creatorcontrib>Xu, Haipeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Dong</au><au>Yang, Lanjun</au><au>Guo, Haishan</au><au>Zhang, Zhiyuan</au><au>Jiang, Hongqiu</au><au>Xu, Haipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air</atitle><jtitle>Physics of plasmas</jtitle><date>2017-07</date><risdate>2017</risdate><volume>24</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C
1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4989714</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7915-8948</orcidid><orcidid>https://orcid.org/0000-0002-7483-4329</orcidid><orcidid>https://orcid.org/0000-0001-9347-2354</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2017-07, Vol.24 (7) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2116117257 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Automotive parts Capillary pressure Charging Delay Discharge Electric arcs Electric potential Electrical resistivity Energy consumption Ignition Magnetic cores Maintenance management Neon Plasma physics Statistical analysis Statistical methods |
title | Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20and%20dispersity%20of%20a%20two%20gap%20capillary%20discharge%20applied%20for%20long%20spark%20gap%20ignition%20in%20air&rft.jtitle=Physics%20of%20plasmas&rft.au=Huang,%20Dong&rft.date=2017-07&rft.volume=24&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4989714&rft_dat=%3Cproquest_cross%3E2116117257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116117257&rft_id=info:pmid/&rfr_iscdi=true |