Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air

In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2017-07, Vol.24 (7)
Hauptverfasser: Huang, Dong, Yang, Lanjun, Guo, Haishan, Zhang, Zhiyuan, Jiang, Hongqiu, Xu, Haipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C 1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4989714