High light extraction efficiency into glass substrate in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis

The newly discovered graded, superlattice photonic crystals with dual periodicity and dual basis present great opportunity for electromagnetic wave control in photonic devices. These graded superlattices can be holographically fabricated by eight beam interference lithography. We have computed, thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-06, Vol.121 (23)
Hauptverfasser: Hassan, Safaa, Lowell, David, Lin, Yuankun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The newly discovered graded, superlattice photonic crystals with dual periodicity and dual basis present great opportunity for electromagnetic wave control in photonic devices. These graded superlattices can be holographically fabricated by eight beam interference lithography. We have computed, through electrodynamic simulation, the light extraction efficiency of planar, white organic light-emitting diodes where the Al cathode is patterned with the graded superlattice with dual basis. Two graded super-lattices with four-fold and two-fold symmetries are used to pattern the Al cathode. The decrease in power losses to surface plasmon and waveguide modes is explained by the varying plasmon path length and grating cycle, respectively, in the graded pattern. To the authors' best knowledge, the highest light extraction efficiency of 73.1% into the glass substrate in organic light-emitting diodes has been predicted through simulations.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4986233