Pedal coordinates, dark Kepler, and other force problems

Pedal coordinates (instead of polar or Cartesian coordinates) are more natural settings in which to study force problems of classical mechanics in the plane. We will show that the trajectory of a test particle under the influence of central and Lorentz-like forces can be translated into pedal coordi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2017-06, Vol.58 (6), p.1
1. Verfasser: Blaschke, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pedal coordinates (instead of polar or Cartesian coordinates) are more natural settings in which to study force problems of classical mechanics in the plane. We will show that the trajectory of a test particle under the influence of central and Lorentz-like forces can be translated into pedal coordinates at once without the need of solving any differential equation. This will allow us to generalize Newton theorem of revolving orbits to include nonlocal transforms of curves. Finally, we apply developed methods to solve the “dark Kepler problem,” i.e., central force problem where in addition to the central body, gravitational influences of dark matter and dark energy are assumed.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4984905