A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics

Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-06, Vol.110 (23)
Hauptverfasser: Hayashi, Daiyu, van Dongen, Anne Marie, Boerekamp, Jack, Spoor, Sandra, Lucassen, Gerald, Schleipen, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitting diode (LED) source consisting of a blue LED for optical excitation, Lu3Al5O12:Ce3+,Cr3+ luminescent garnet for visible to near infrared emissions, and Bismuth doped GeO2 luminescent glass for near-infrared to short-wave infrared emissions. It emits broad-band light emissions continuously in 470–1600 nm with a spectral gap at 900–1000 nm. In comparison to the currently available broadband light sources like halogen lamps, high-pressure discharge lamps and super continuum lasers, the light sources of this paper has significant advantages for spectral tissue diagnostics in high-spectral stability, improved light coupling to optical fibers, potential in low light source cost and enabling battery-drive.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4985015