A correlative experimental and ab initio approach to improve the fracture behavior of Mo thin films by alloying with Cu

The effect of Cu alloying on the deformation behavior of Mo thin films is investigated as a feasible concept to overcome their poor ductility, which severely limits performance in flexible electronics. 50 nm thick Mo1-xCux films (with 0 ≤ x ≤ 0.51) were sputter-deposited on polyimide substrates and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-09, Vol.111 (13)
Hauptverfasser: Jörg, Tanja, Music, Denis, Cordill, Megan J., Franz, Robert, Köstenbauer, Harald, Linke, Christian, Winkler, Jörg, Schneider, Jochen M., Mitterer, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of Cu alloying on the deformation behavior of Mo thin films is investigated as a feasible concept to overcome their poor ductility, which severely limits performance in flexible electronics. 50 nm thick Mo1-xCux films (with 0 ≤ x ≤ 0.51) were sputter-deposited on polyimide substrates and subjected to uniaxial tensile loading while measuring their electrical resistance in situ. A significant ductility enhancement is experimentally observed with increasing Cu content. This can be rationalized by considering the associated changes in bond character as the Cu additions weaken the covalent and hence shear resistant contribution to the overall bond character.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4999205