Numerical modeling of the infrasonic and seismic waves propagation in the “Earth-Atmosphere” model with a curvilinear interface

In this paper we consider the numerical solution to the problem of the infrasonic and seismic wave propagation for the spatial inhomogeneous model Atmosphere-Earth. The interface between the atmosphere and the elastic medium is assumed to be curvilinear. The efficient numerical algorithm for carryin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mikhailov, Aleksandr A., Martynov, Valery N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the numerical solution to the problem of the infrasonic and seismic wave propagation for the spatial inhomogeneous model Atmosphere-Earth. The interface between the atmosphere and the elastic medium is assumed to be curvilinear. The efficient numerical algorithm for carrying out calculations on multi-processor computer systems is described. A specific feature of the algorithm proposed is a combination of integral transforms and the finite difference method. The propagation of infrasonic waves in the isothermal atmosphere is described by the linearized Navier-Stokes equations in the form of the hyperbolic first order system in the 3D Cartesian coordinate system. The propagation of seismic waves in the lithosphere is described by the hyperbolic first order system in terms of the displacement velocity vector and stress tensor according to elasticity theory. In this paper we present the results of numerical modeling of wave fields for the test models in the case when the interface between the atmosphere and elastic half-space is curvilinear.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5012658