Modeling of wave processes in a blocky medium with fluid-saturated porous interlayers
Wave processes in a 2D blocky medium are under investigation. Considered continuum consists of rectangular elastic blocks divided by fluid-saturated porous interlayers. The interlayers are described in terms of modified Biot’s porous-flow model. Porous skeleton in the model has viscoelastic properti...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wave processes in a 2D blocky medium are under investigation. Considered continuum consists of rectangular elastic blocks divided by fluid-saturated porous interlayers. The interlayers are described in terms of modified Biot’s porous-flow model. Porous skeleton in the model has viscoelastic properties and takes pore collapsing effect into account. In order to analyse the fluid behavior in nodes between blocks, a hydrodynamic analogue of Kirchhoff’s law is used. To implement presented model nu-merically, a computational algorithm, based on a two-cyclic splitting by spatial variables, is developed. For the blocks equations Godunov’s gap decay scheme is used; for the interlayers equations a hybrid numerical method, based on the dissipationless Go- dunov’s and Ivanov’s schemes, is applied. Parallel software is designed for analysing stresses and velocity fields in a 2D blocky medium. Comparative study of the model with elastic interlayers and the model with fluid-saturated porous interlayers is carried out. It is shown that the latter model preserves isotropic properties of a medium longer than the former model, as the interlayer thickness increases. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5007396 |