Electrical transport properties of black phosphorus based field-effect transistor with Au/Co/MgO tunneling contacts

Black phosphorus (BP) has recently emerged as a promising two-dimensional direct bandgap semiconducting material. Here, we report the fabrication and the electrical transport measurements of the black phosphorus based field-effect transistor with the Au/Co/MgO as drain and source tunneling contacts....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-10, Vol.122 (16)
Hauptverfasser: Liang, Shiheng, Yang, Huaiwen, Djeffal, Abdelhak, Tao, Bingshan, Mc-Murtry, Stefan, Mangin, Stéphane, Lu, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black phosphorus (BP) has recently emerged as a promising two-dimensional direct bandgap semiconducting material. Here, we report the fabrication and the electrical transport measurements of the black phosphorus based field-effect transistor with the Au/Co/MgO as drain and source tunneling contacts. By modulating the back-gate voltage, the multilayer black phosphorus channel exhibits ambipolar characteristics (both n-type and p-type) and the conduction behavior can be switched from hole dominated to electron dominated transport region. In the hole dominated region, we have measured a minimum of Schottky barrier height of 37 meV for Au/Co/MgO contact on BP. Moreover, the transistor ON/OFF (I on/I off) ratio is obtained as large as 107 at 20 K and 105 at 300 K. A systematic study of the temperature and the back-gate voltage dependent conduction properties has been performed to understand the modulation of band structure and the ambipolar behavior. The demonstration of high ON/OFF ratio and low Schottky barrier height by using Au/Co/MgO tunneling contacts reveals a promising potential for spintronics applications with multilayer black phosphorus field-effect transistor.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5000524