Review of current results in computational studies of hydrocarbon phase and transport properties in nanoporous structures

This article provides a general overview of the main simulation results on the behavior of gas/liquids under confinement conditions, namely hydrocarbons in shale formations, and current understanding of such phenomena. In addition to the key effects, which different research groups obtained and whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stroev, N., Myasnikov, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article provides a general overview of the main simulation results on the behavior of gas/liquids under confinement conditions, namely hydrocarbons in shale formations, and current understanding of such phenomena. In addition to the key effects, which different research groups obtained and which have to be taken into account during the creation of reservoir simulation software, a list of methods is briefly covered. Comprehensive understanding of both fluid phase equilibrium and transport properties in nanoscale structures is of great importance for many scientific and technical disciplines, especially for petroleum engineering considering the hydrocarbon behavior in complex shale formations, the development of which increases with time. Recent estimations show that a significant amount of resources are trapped inside organic matter and clays, which has extremely low permeability and yet great economic potential. The issue is not only of practical importance, as the existing conventional approaches by definition are unable to capture complicated physics phenomena for effective results, but it is also of fundamental value. The research of the processes connected with such deposits is necessary for both evaluations of petroleum reservoir deposits and hydrodynamic simulators. That is why the review is divided into two major parts—equilibrium states of hydrocarbons and their transport properties in highly confined conditions.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5013894