Analytical expressions for the evolution of many-body quantum systems quenched far from equilibrium
Possible strategies to describe analytically the dynamics of many-body quantum systems out of equilibrium include the use of solvable models and of full random matrices. None of the two approaches represent actual realistic systems, but they serve as references for the studies of these ones. We take...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Possible strategies to describe analytically the dynamics of many-body quantum systems out of equilibrium include the use of solvable models and of full random matrices. None of the two approaches represent actual realistic systems, but they serve as references for the studies of these ones. We take the second path and obtain analytical expressions for the survival probability, density imbalance, and out-of-time-ordered correlator. Using these findings, we then propose an approximate expression that matches very well numerical results for the evolution of realistic finite quantum systems that are strongly chaotic and quenched far from equilibrium. In the case of the survival probability, the expression proposed covers all different time scales, from the moment the system is taken out of equilibrium to the moment it reaches a new equilibrium. The realistic systems considered are described by one-dimensional spin-1/2 models. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5016140 |