In-situ observation of stacking fault evolution in vacuum-deposited C60

We report an in-situ study of stacking fault evolution in C60 thin films using grazing-incidence x-ray scattering. A Williamson-Hall analysis of the main scattering features during growth of a 15 nm film on glass indicates lattice strain as high as 6% in the first 5 nm of the film, with a decrease t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-12, Vol.111 (23)
Hauptverfasser: Hardigree, J. F. M., Ramirez, I. R., Mazzotta, G., Nicklin, C., Riede, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an in-situ study of stacking fault evolution in C60 thin films using grazing-incidence x-ray scattering. A Williamson-Hall analysis of the main scattering features during growth of a 15 nm film on glass indicates lattice strain as high as 6% in the first 5 nm of the film, with a decrease to 2% beyond 8 nm thickness. Deformation stacking faults along the {220} plane are found to occur with 68% probability and closely linked to the formation of a nanocrystalline powder-like film. Our findings, which capture monolayer-resolution growth, are consistent with previous work on crystalline and powder C60 films, and provide a crystallographic context for the real-time study of organic semiconductor thin films.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4995571