DNPU: An Energy-Efficient Deep-Learning Processor with Heterogeneous Multi-Core Architecture

An energy-efficient deep-learning processor called DNPU is proposed for the embedded processing of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. DNPU uses a heterogeneous multi-core architecture to maximize energy efficiency in both CNNs and RNNs. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2018-09, Vol.38 (5), p.85-93
Hauptverfasser: Shin, Dongjoo, Lee, Jinmook, Lee, Jinsu, Lee, Juhyoung, Yoo, Hoi-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An energy-efficient deep-learning processor called DNPU is proposed for the embedded processing of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. DNPU uses a heterogeneous multi-core architecture to maximize energy efficiency in both CNNs and RNNs. In each core, a memory architecture, data paths, and processing elements are optimized depending on the characteristics of each network. Also, a mixed workload division method is proposed to minimize off-chip memory access in CNNs, and a quantization table-based matrix multiplier is proposed to remove duplicated multiplications in RNNs.
ISSN:0272-1732
1937-4143
DOI:10.1109/MM.2018.053631145