DNPU: An Energy-Efficient Deep-Learning Processor with Heterogeneous Multi-Core Architecture
An energy-efficient deep-learning processor called DNPU is proposed for the embedded processing of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. DNPU uses a heterogeneous multi-core architecture to maximize energy efficiency in both CNNs and RNNs. In...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2018-09, Vol.38 (5), p.85-93 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An energy-efficient deep-learning processor called DNPU is proposed for the embedded processing of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. DNPU uses a heterogeneous multi-core architecture to maximize energy efficiency in both CNNs and RNNs. In each core, a memory architecture, data paths, and processing elements are optimized depending on the characteristics of each network. Also, a mixed workload division method is proposed to minimize off-chip memory access in CNNs, and a quantization table-based matrix multiplier is proposed to remove duplicated multiplications in RNNs. |
---|---|
ISSN: | 0272-1732 1937-4143 |
DOI: | 10.1109/MM.2018.053631145 |