Frequency dependence of trapped flux sensitivity in SRF cavities
In this letter, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field—sensitivity—is observed for higher frequencie...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-02, Vol.112 (7) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field—sensitivity—is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of the electron mean-free-path, compared to 120 °C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including frequencies other than 1.3 GHz, and that the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5016525 |