High n-type Sb dopant activation in Ge-rich poly-Ge1−xSnx layers on SiO2 using pulsed laser annealing in flowing water
Heavy n-type doping in polycrystalline Ge (poly-Ge) is still under development owing to the low solid solubility and the low activation ratio of group-V dopants in Ge. To solve this problem, we have investigated ultra-short (55 ns) laser pulse annealing in flowing water for Sb-doped amorphous Ge1−xS...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-02, Vol.112 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heavy n-type doping in polycrystalline Ge (poly-Ge) is still under development owing to the low solid solubility and the low activation ratio of group-V dopants in Ge. To solve this problem, we have investigated ultra-short (55 ns) laser pulse annealing in flowing water for Sb-doped amorphous Ge1−xSnx layers (x ≈ 0.02) on SiO2. It is found that fully melting a Ge1−xSnx layer down to the Ge1−xSnx/SiO2 interface leads to a large grained (∼0.8 μmϕ) growth, resulting in not only a high electrical activation ratio (∼60%) of Sb atoms in the polycrystals but also a high electron density around 1020 cm−3. As a result, the electron mobility in the Ge-rich poly-Ge1−xSnx layers exceeds that in single-crystalline Si even in the region of a high electron density around 1020 cm−3. The low thermal budget process opens up the possibility for developing Ge1−xSnx based devices fabricated on 3D integrated circuits as well as flexible substrates. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4997369 |