Three-dimensional printing of hybrid organic/inorganic composites with long persistence luminescence

Additive manufacturing (AM) techniques allow for the construction of sophisticated and hollow models based on the needs of customers, and they functionalize the raw materials (e.g., metal, polymer and ceramic) by structuring them. Here, we demonstrate a simple method for the realization of a three-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials express 2018-09, Vol.8 (9), p.2823
Hauptverfasser: Ni, Rongping, Qian, Bin, Liu, Chang, Liu, Xiaofeng, Qiu, Jianrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Additive manufacturing (AM) techniques allow for the construction of sophisticated and hollow models based on the needs of customers, and they functionalize the raw materials (e.g., metal, polymer and ceramic) by structuring them. Here, we demonstrate a simple method for the realization of a three-dimensional architecture with long afterglow properties by curing organic resin doped with inorganic long persistent phosphors (LPPs) layer by layer through the stereolithography (SLA) technique. In our process, the LPPs made by solid state reaction were incorporated homogenously into a resin matrix and pre-designed 3D structures with the resolution of 0.1 mm were printed out. The high luminescence, considerable decay time and multi-color make these organic/inorganic composites reliable for applications in artifacts, crafts, toys and night indicators. It is also demonstrated that the resin containing SrAl2O4: Eu2+, Dy3+ phosphors can be used for fiber temperature sensing from 40 °C to 70 °C.
ISSN:2159-3930
2159-3930
DOI:10.1364/OME.8.002823