Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

High aspect ratio free-standing Al-doped ZnO (AZO) nanopillars and nanotubes were fabricated using a combination of advanced reactive ion etching and atomic layer deposition (ALD) techniques. Prior to the pillar and tube fabrication, AZO layers were grown on flat silicon and glass substrates with di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials express 2017-05, Vol.7 (5), p.1606
Hauptverfasser: Shkondin, E., Takayama, O., Panah, M. E. Aryaee, Liu, P., Larsen, P. V., Mar, M. D., Jensen, F., Lavrinenko, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High aspect ratio free-standing Al-doped ZnO (AZO) nanopillars and nanotubes were fabricated using a combination of advanced reactive ion etching and atomic layer deposition (ALD) techniques. Prior to the pillar and tube fabrication, AZO layers were grown on flat silicon and glass substrates with different Al concentrations at 150-250 °C. For each temperature and Al concentration the ALD growth behavior, crystalline structure, physical, electrical and optical properties were investigated. It was found that AZO films deposited at 250 °C exhibit the most pronounced plasmonic behavior with the highest plasma frequency. During pillar fabrication, AZO conformally passivates the silicon template, which is characteristic of typical ALD growth conditions. The last step of fabrication is heavily dependent on the selective chemistry of the SF6 plasma. It was shown that silicon between AZO structures can be selectively removed with no observable influence on the ALD deposited coatings. The prepared free-standing AZO structures were characterized using Fourier transform infrared spectroscopy (FTIR). The restoration of the effective permittivities of the structures reveals that their anisotropy significantly deviates from the effective medium approximation (EMA) prognoses. It suggests that the permittivity of the AZO in tightly confined nanopillars is very different from that of flat AZO films.
ISSN:2159-3930
2159-3930
DOI:10.1364/OME.7.001606