Effect of dispersion on metal–insulator–metal infrared absorption resonances
Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive inde...
Gespeichert in:
Veröffentlicht in: | MRS communications 2018-09, Vol.8 (3), p.830-834 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 3 |
container_start_page | 830 |
container_title | MRS communications |
container_volume | 8 |
creator | Calhoun, Seth R. Lowry, Vanessa C. Stack, Reid Evans, Rachel N. Brescia, Jonathan R. Fredricksen, Chris J. Nath, Janardan Peale, Robert E. Smith, Evan M. Cleary, Justin W. |
description | Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves. |
doi_str_mv | 10.1557/mrc.2018.88 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115561443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrc_2018_88</cupid><sourcerecordid>2115561443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRRtRMMSs_IEBlzqxH9OPLCXEBwR0oeump1MdJmSmY_Vk4c5_8A_9Ejsm6EYsCupSnLoFl5BzRsdMSn3doh9zyszYmCMy4ExOSmWUPv7RcnJKRimtaC6puNZyQJ5mIYDvixiKRZM2gKmJXZG7hd6tP98_mi5t166PmPX3rmi6gA5hUbg6Rdz0uwOEFDvXeUhn5CS4dYLRYQ7Jy-3seXpfzh_vHqY389ILofoyGMo1GDVhVFXKe1ChpkLoStReOl1LzSX3vvK-rr0Dw4I3laOCMxUM8EoMycXed4PxdQupt6u4xS6_tJzlPBSrKpGpyz3lMaaEEOwGm9bhm2XU7lKzOTW7S80ak-mrPZ0y1S0Bfz3_xsuDuWtrbBZL-J__ApE7gGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115561443</pqid></control><display><type>article</type><title>Effect of dispersion on metal–insulator–metal infrared absorption resonances</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Calhoun, Seth R. ; Lowry, Vanessa C. ; Stack, Reid ; Evans, Rachel N. ; Brescia, Jonathan R. ; Fredricksen, Chris J. ; Nath, Janardan ; Peale, Robert E. ; Smith, Evan M. ; Cleary, Justin W.</creator><creatorcontrib>Calhoun, Seth R. ; Lowry, Vanessa C. ; Stack, Reid ; Evans, Rachel N. ; Brescia, Jonathan R. ; Fredricksen, Chris J. ; Nath, Janardan ; Peale, Robert E. ; Smith, Evan M. ; Cleary, Justin W.</creatorcontrib><description>Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.</description><identifier>ISSN: 2159-6859</identifier><identifier>EISSN: 2159-6867</identifier><identifier>DOI: 10.1557/mrc.2018.88</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aluminum ; Biomaterials ; Bolometers ; Characterization and Evaluation of Materials ; Computer simulation ; Dielectric strength ; Ground plane ; Infrared absorption ; Infrared analysis ; Materials Engineering ; Materials Science ; Mathematical models ; Nanotechnology ; Polymer Sciences ; Refractivity ; Research Letter ; Research Letters ; Sensitivity enhancement ; Silicon dioxide ; Silicon nitride ; Simulation ; Software ; Spectrum analysis ; Standing waves ; Titanium dioxide ; Wave dispersion</subject><ispartof>MRS communications, 2018-09, Vol.8 (3), p.830-834</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</citedby><cites>FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrc.2018.88$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2159685918000885/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Calhoun, Seth R.</creatorcontrib><creatorcontrib>Lowry, Vanessa C.</creatorcontrib><creatorcontrib>Stack, Reid</creatorcontrib><creatorcontrib>Evans, Rachel N.</creatorcontrib><creatorcontrib>Brescia, Jonathan R.</creatorcontrib><creatorcontrib>Fredricksen, Chris J.</creatorcontrib><creatorcontrib>Nath, Janardan</creatorcontrib><creatorcontrib>Peale, Robert E.</creatorcontrib><creatorcontrib>Smith, Evan M.</creatorcontrib><creatorcontrib>Cleary, Justin W.</creatorcontrib><title>Effect of dispersion on metal–insulator–metal infrared absorption resonances</title><title>MRS communications</title><addtitle>MRS Communications</addtitle><addtitle>MRC</addtitle><description>Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.</description><subject>Aluminum</subject><subject>Biomaterials</subject><subject>Bolometers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer simulation</subject><subject>Dielectric strength</subject><subject>Ground plane</subject><subject>Infrared absorption</subject><subject>Infrared analysis</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Polymer Sciences</subject><subject>Refractivity</subject><subject>Research Letter</subject><subject>Research Letters</subject><subject>Sensitivity enhancement</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><subject>Simulation</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Standing waves</subject><subject>Titanium dioxide</subject><subject>Wave dispersion</subject><issn>2159-6859</issn><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKA0EQRRtRMMSs_IEBlzqxH9OPLCXEBwR0oeump1MdJmSmY_Vk4c5_8A_9Ejsm6EYsCupSnLoFl5BzRsdMSn3doh9zyszYmCMy4ExOSmWUPv7RcnJKRimtaC6puNZyQJ5mIYDvixiKRZM2gKmJXZG7hd6tP98_mi5t166PmPX3rmi6gA5hUbg6Rdz0uwOEFDvXeUhn5CS4dYLRYQ7Jy-3seXpfzh_vHqY389ILofoyGMo1GDVhVFXKe1ChpkLoStReOl1LzSX3vvK-rr0Dw4I3laOCMxUM8EoMycXed4PxdQupt6u4xS6_tJzlPBSrKpGpyz3lMaaEEOwGm9bhm2XU7lKzOTW7S80ak-mrPZ0y1S0Bfz3_xsuDuWtrbBZL-J__ApE7gGA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Calhoun, Seth R.</creator><creator>Lowry, Vanessa C.</creator><creator>Stack, Reid</creator><creator>Evans, Rachel N.</creator><creator>Brescia, Jonathan R.</creator><creator>Fredricksen, Chris J.</creator><creator>Nath, Janardan</creator><creator>Peale, Robert E.</creator><creator>Smith, Evan M.</creator><creator>Cleary, Justin W.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180901</creationdate><title>Effect of dispersion on metal–insulator–metal infrared absorption resonances</title><author>Calhoun, Seth R. ; Lowry, Vanessa C. ; Stack, Reid ; Evans, Rachel N. ; Brescia, Jonathan R. ; Fredricksen, Chris J. ; Nath, Janardan ; Peale, Robert E. ; Smith, Evan M. ; Cleary, Justin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Biomaterials</topic><topic>Bolometers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer simulation</topic><topic>Dielectric strength</topic><topic>Ground plane</topic><topic>Infrared absorption</topic><topic>Infrared analysis</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Polymer Sciences</topic><topic>Refractivity</topic><topic>Research Letter</topic><topic>Research Letters</topic><topic>Sensitivity enhancement</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><topic>Simulation</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Standing waves</topic><topic>Titanium dioxide</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calhoun, Seth R.</creatorcontrib><creatorcontrib>Lowry, Vanessa C.</creatorcontrib><creatorcontrib>Stack, Reid</creatorcontrib><creatorcontrib>Evans, Rachel N.</creatorcontrib><creatorcontrib>Brescia, Jonathan R.</creatorcontrib><creatorcontrib>Fredricksen, Chris J.</creatorcontrib><creatorcontrib>Nath, Janardan</creatorcontrib><creatorcontrib>Peale, Robert E.</creatorcontrib><creatorcontrib>Smith, Evan M.</creatorcontrib><creatorcontrib>Cleary, Justin W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calhoun, Seth R.</au><au>Lowry, Vanessa C.</au><au>Stack, Reid</au><au>Evans, Rachel N.</au><au>Brescia, Jonathan R.</au><au>Fredricksen, Chris J.</au><au>Nath, Janardan</au><au>Peale, Robert E.</au><au>Smith, Evan M.</au><au>Cleary, Justin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of dispersion on metal–insulator–metal infrared absorption resonances</atitle><jtitle>MRS communications</jtitle><stitle>MRS Communications</stitle><addtitle>MRC</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>830</spage><epage>834</epage><pages>830-834</pages><issn>2159-6859</issn><eissn>2159-6867</eissn><abstract>Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrc.2018.88</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-6859 |
ispartof | MRS communications, 2018-09, Vol.8 (3), p.830-834 |
issn | 2159-6859 2159-6867 |
language | eng |
recordid | cdi_proquest_journals_2115561443 |
source | SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
subjects | Aluminum Biomaterials Bolometers Characterization and Evaluation of Materials Computer simulation Dielectric strength Ground plane Infrared absorption Infrared analysis Materials Engineering Materials Science Mathematical models Nanotechnology Polymer Sciences Refractivity Research Letter Research Letters Sensitivity enhancement Silicon dioxide Silicon nitride Simulation Software Spectrum analysis Standing waves Titanium dioxide Wave dispersion |
title | Effect of dispersion on metal–insulator–metal infrared absorption resonances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20dispersion%20on%20metal%E2%80%93insulator%E2%80%93metal%20infrared%20absorption%20resonances&rft.jtitle=MRS%20communications&rft.au=Calhoun,%20Seth%20R.&rft.date=2018-09-01&rft.volume=8&rft.issue=3&rft.spage=830&rft.epage=834&rft.pages=830-834&rft.issn=2159-6859&rft.eissn=2159-6867&rft_id=info:doi/10.1557/mrc.2018.88&rft_dat=%3Cproquest_cross%3E2115561443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115561443&rft_id=info:pmid/&rft_cupid=10_1557_mrc_2018_88&rfr_iscdi=true |