Effect of dispersion on metal–insulator–metal infrared absorption resonances

Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive inde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS communications 2018-09, Vol.8 (3), p.830-834
Hauptverfasser: Calhoun, Seth R., Lowry, Vanessa C., Stack, Reid, Evans, Rachel N., Brescia, Jonathan R., Fredricksen, Chris J., Nath, Janardan, Peale, Robert E., Smith, Evan M., Cleary, Justin W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 3
container_start_page 830
container_title MRS communications
container_volume 8
creator Calhoun, Seth R.
Lowry, Vanessa C.
Stack, Reid
Evans, Rachel N.
Brescia, Jonathan R.
Fredricksen, Chris J.
Nath, Janardan
Peale, Robert E.
Smith, Evan M.
Cleary, Justin W.
description Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.
doi_str_mv 10.1557/mrc.2018.88
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2115561443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrc_2018_88</cupid><sourcerecordid>2115561443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRRtRMMSs_IEBlzqxH9OPLCXEBwR0oeump1MdJmSmY_Vk4c5_8A_9Ejsm6EYsCupSnLoFl5BzRsdMSn3doh9zyszYmCMy4ExOSmWUPv7RcnJKRimtaC6puNZyQJ5mIYDvixiKRZM2gKmJXZG7hd6tP98_mi5t166PmPX3rmi6gA5hUbg6Rdz0uwOEFDvXeUhn5CS4dYLRYQ7Jy-3seXpfzh_vHqY389ILofoyGMo1GDVhVFXKe1ChpkLoStReOl1LzSX3vvK-rr0Dw4I3laOCMxUM8EoMycXed4PxdQupt6u4xS6_tJzlPBSrKpGpyz3lMaaEEOwGm9bhm2XU7lKzOTW7S80ak-mrPZ0y1S0Bfz3_xsuDuWtrbBZL-J__ApE7gGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115561443</pqid></control><display><type>article</type><title>Effect of dispersion on metal–insulator–metal infrared absorption resonances</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Calhoun, Seth R. ; Lowry, Vanessa C. ; Stack, Reid ; Evans, Rachel N. ; Brescia, Jonathan R. ; Fredricksen, Chris J. ; Nath, Janardan ; Peale, Robert E. ; Smith, Evan M. ; Cleary, Justin W.</creator><creatorcontrib>Calhoun, Seth R. ; Lowry, Vanessa C. ; Stack, Reid ; Evans, Rachel N. ; Brescia, Jonathan R. ; Fredricksen, Chris J. ; Nath, Janardan ; Peale, Robert E. ; Smith, Evan M. ; Cleary, Justin W.</creatorcontrib><description>Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.</description><identifier>ISSN: 2159-6859</identifier><identifier>EISSN: 2159-6867</identifier><identifier>DOI: 10.1557/mrc.2018.88</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aluminum ; Biomaterials ; Bolometers ; Characterization and Evaluation of Materials ; Computer simulation ; Dielectric strength ; Ground plane ; Infrared absorption ; Infrared analysis ; Materials Engineering ; Materials Science ; Mathematical models ; Nanotechnology ; Polymer Sciences ; Refractivity ; Research Letter ; Research Letters ; Sensitivity enhancement ; Silicon dioxide ; Silicon nitride ; Simulation ; Software ; Spectrum analysis ; Standing waves ; Titanium dioxide ; Wave dispersion</subject><ispartof>MRS communications, 2018-09, Vol.8 (3), p.830-834</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</citedby><cites>FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrc.2018.88$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2159685918000885/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Calhoun, Seth R.</creatorcontrib><creatorcontrib>Lowry, Vanessa C.</creatorcontrib><creatorcontrib>Stack, Reid</creatorcontrib><creatorcontrib>Evans, Rachel N.</creatorcontrib><creatorcontrib>Brescia, Jonathan R.</creatorcontrib><creatorcontrib>Fredricksen, Chris J.</creatorcontrib><creatorcontrib>Nath, Janardan</creatorcontrib><creatorcontrib>Peale, Robert E.</creatorcontrib><creatorcontrib>Smith, Evan M.</creatorcontrib><creatorcontrib>Cleary, Justin W.</creatorcontrib><title>Effect of dispersion on metal–insulator–metal infrared absorption resonances</title><title>MRS communications</title><addtitle>MRS Communications</addtitle><addtitle>MRC</addtitle><description>Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.</description><subject>Aluminum</subject><subject>Biomaterials</subject><subject>Bolometers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer simulation</subject><subject>Dielectric strength</subject><subject>Ground plane</subject><subject>Infrared absorption</subject><subject>Infrared analysis</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Polymer Sciences</subject><subject>Refractivity</subject><subject>Research Letter</subject><subject>Research Letters</subject><subject>Sensitivity enhancement</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><subject>Simulation</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Standing waves</subject><subject>Titanium dioxide</subject><subject>Wave dispersion</subject><issn>2159-6859</issn><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKA0EQRRtRMMSs_IEBlzqxH9OPLCXEBwR0oeump1MdJmSmY_Vk4c5_8A_9Ejsm6EYsCupSnLoFl5BzRsdMSn3doh9zyszYmCMy4ExOSmWUPv7RcnJKRimtaC6puNZyQJ5mIYDvixiKRZM2gKmJXZG7hd6tP98_mi5t166PmPX3rmi6gA5hUbg6Rdz0uwOEFDvXeUhn5CS4dYLRYQ7Jy-3seXpfzh_vHqY389ILofoyGMo1GDVhVFXKe1ChpkLoStReOl1LzSX3vvK-rr0Dw4I3laOCMxUM8EoMycXed4PxdQupt6u4xS6_tJzlPBSrKpGpyz3lMaaEEOwGm9bhm2XU7lKzOTW7S80ak-mrPZ0y1S0Bfz3_xsuDuWtrbBZL-J__ApE7gGA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Calhoun, Seth R.</creator><creator>Lowry, Vanessa C.</creator><creator>Stack, Reid</creator><creator>Evans, Rachel N.</creator><creator>Brescia, Jonathan R.</creator><creator>Fredricksen, Chris J.</creator><creator>Nath, Janardan</creator><creator>Peale, Robert E.</creator><creator>Smith, Evan M.</creator><creator>Cleary, Justin W.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180901</creationdate><title>Effect of dispersion on metal–insulator–metal infrared absorption resonances</title><author>Calhoun, Seth R. ; Lowry, Vanessa C. ; Stack, Reid ; Evans, Rachel N. ; Brescia, Jonathan R. ; Fredricksen, Chris J. ; Nath, Janardan ; Peale, Robert E. ; Smith, Evan M. ; Cleary, Justin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f8027e86910646cce6fb033743bc5a7b57252cc4ccbbcae81fc84a03216f8e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Biomaterials</topic><topic>Bolometers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer simulation</topic><topic>Dielectric strength</topic><topic>Ground plane</topic><topic>Infrared absorption</topic><topic>Infrared analysis</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Polymer Sciences</topic><topic>Refractivity</topic><topic>Research Letter</topic><topic>Research Letters</topic><topic>Sensitivity enhancement</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><topic>Simulation</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Standing waves</topic><topic>Titanium dioxide</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calhoun, Seth R.</creatorcontrib><creatorcontrib>Lowry, Vanessa C.</creatorcontrib><creatorcontrib>Stack, Reid</creatorcontrib><creatorcontrib>Evans, Rachel N.</creatorcontrib><creatorcontrib>Brescia, Jonathan R.</creatorcontrib><creatorcontrib>Fredricksen, Chris J.</creatorcontrib><creatorcontrib>Nath, Janardan</creatorcontrib><creatorcontrib>Peale, Robert E.</creatorcontrib><creatorcontrib>Smith, Evan M.</creatorcontrib><creatorcontrib>Cleary, Justin W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calhoun, Seth R.</au><au>Lowry, Vanessa C.</au><au>Stack, Reid</au><au>Evans, Rachel N.</au><au>Brescia, Jonathan R.</au><au>Fredricksen, Chris J.</au><au>Nath, Janardan</au><au>Peale, Robert E.</au><au>Smith, Evan M.</au><au>Cleary, Justin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of dispersion on metal–insulator–metal infrared absorption resonances</atitle><jtitle>MRS communications</jtitle><stitle>MRS Communications</stitle><addtitle>MRC</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>830</spage><epage>834</epage><pages>830-834</pages><issn>2159-6859</issn><eissn>2159-6867</eissn><abstract>Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrc.2018.88</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2159-6859
ispartof MRS communications, 2018-09, Vol.8 (3), p.830-834
issn 2159-6859
2159-6867
language eng
recordid cdi_proquest_journals_2115561443
source SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
subjects Aluminum
Biomaterials
Bolometers
Characterization and Evaluation of Materials
Computer simulation
Dielectric strength
Ground plane
Infrared absorption
Infrared analysis
Materials Engineering
Materials Science
Mathematical models
Nanotechnology
Polymer Sciences
Refractivity
Research Letter
Research Letters
Sensitivity enhancement
Silicon dioxide
Silicon nitride
Simulation
Software
Spectrum analysis
Standing waves
Titanium dioxide
Wave dispersion
title Effect of dispersion on metal–insulator–metal infrared absorption resonances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20dispersion%20on%20metal%E2%80%93insulator%E2%80%93metal%20infrared%20absorption%20resonances&rft.jtitle=MRS%20communications&rft.au=Calhoun,%20Seth%20R.&rft.date=2018-09-01&rft.volume=8&rft.issue=3&rft.spage=830&rft.epage=834&rft.pages=830-834&rft.issn=2159-6859&rft.eissn=2159-6867&rft_id=info:doi/10.1557/mrc.2018.88&rft_dat=%3Cproquest_cross%3E2115561443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115561443&rft_id=info:pmid/&rft_cupid=10_1557_mrc_2018_88&rfr_iscdi=true