(\mathbb{Z}_k\)-stratifolds
Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Angel, Andrés Torres, Arley Fernando Segovia, Carlos |
description | Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}_k\). We present a geometric interpretation of the Bockstein long exact sequences and the Atiyah-Hirzebruch spectral sequence for \(\mathbb{Z}_k\)-bordism (\(k\) an odd number). Finally, for \(p\) an odd prime, we give geometric representatives of all classes in \(H_*(B\mathbb{Z}_p;\mathbb{Z}_p)\) using \(\mathbb{Z}_p\)-stratifolds. |
doi_str_mv | 10.48550/arxiv.1810.00531 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2115556895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115556895</sourcerecordid><originalsourceid>FETCH-proquest_journals_21155568953</originalsourceid><addsrcrecordid>eNpjYJA0NNAzsTA1NdBPLKrILNMztAAKGBiYGhsyMXAaGRsb6lqYGBlxMPAWF2cZGBgYmZkbmZoaczJIa8TkJpZkJCVVR9XGZ8do6haXFCWWZKbl56QU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGhoampqZmFpakxcaoA8lwxkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115556895</pqid></control><display><type>article</type><title>(\mathbb{Z}_k\)-stratifolds</title><source>Freely Accessible Journals</source><creator>Angel, Andrés ; Torres, Arley Fernando ; Segovia, Carlos</creator><creatorcontrib>Angel, Andrés ; Torres, Arley Fernando ; Segovia, Carlos</creatorcontrib><description>Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}_k\). We present a geometric interpretation of the Bockstein long exact sequences and the Atiyah-Hirzebruch spectral sequence for \(\mathbb{Z}_k\)-bordism (\(k\) an odd number). Finally, for \(p\) an odd prime, we give geometric representatives of all classes in \(H_*(B\mathbb{Z}_p;\mathbb{Z}_p)\) using \(\mathbb{Z}_p\)-stratifolds.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1810.00531</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Angel, Andrés</creatorcontrib><creatorcontrib>Torres, Arley Fernando</creatorcontrib><creatorcontrib>Segovia, Carlos</creatorcontrib><title>(\mathbb{Z}_k\)-stratifolds</title><title>arXiv.org</title><description>Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}_k\). We present a geometric interpretation of the Bockstein long exact sequences and the Atiyah-Hirzebruch spectral sequence for \(\mathbb{Z}_k\)-bordism (\(k\) an odd number). Finally, for \(p\) an odd prime, we give geometric representatives of all classes in \(H_*(B\mathbb{Z}_p;\mathbb{Z}_p)\) using \(\mathbb{Z}_p\)-stratifolds.</description><subject>Homology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYJA0NNAzsTA1NdBPLKrILNMztAAKGBiYGhsyMXAaGRsb6lqYGBlxMPAWF2cZGBgYmZkbmZoaczJIa8TkJpZkJCVVR9XGZ8do6haXFCWWZKbl56QU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGhoampqZmFpakxcaoA8lwxkw</recordid><startdate>20230310</startdate><enddate>20230310</enddate><creator>Angel, Andrés</creator><creator>Torres, Arley Fernando</creator><creator>Segovia, Carlos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230310</creationdate><title>(\mathbb{Z}_k\)-stratifolds</title><author>Angel, Andrés ; Torres, Arley Fernando ; Segovia, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21155568953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Homology</topic><toplevel>online_resources</toplevel><creatorcontrib>Angel, Andrés</creatorcontrib><creatorcontrib>Torres, Arley Fernando</creatorcontrib><creatorcontrib>Segovia, Carlos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angel, Andrés</au><au>Torres, Arley Fernando</au><au>Segovia, Carlos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\mathbb{Z}_k\)-stratifolds</atitle><jtitle>arXiv.org</jtitle><date>2023-03-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}_k\). We present a geometric interpretation of the Bockstein long exact sequences and the Atiyah-Hirzebruch spectral sequence for \(\mathbb{Z}_k\)-bordism (\(k\) an odd number). Finally, for \(p\) an odd prime, we give geometric representatives of all classes in \(H_*(B\mathbb{Z}_p;\mathbb{Z}_p)\) using \(\mathbb{Z}_p\)-stratifolds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1810.00531</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2115556895 |
source | Freely Accessible Journals |
subjects | Homology |
title | (\mathbb{Z}_k\)-stratifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Cmathbb%7BZ%7D_k%5C)-stratifolds&rft.jtitle=arXiv.org&rft.au=Angel,%20Andr%C3%A9s&rft.date=2023-03-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1810.00531&rft_dat=%3Cproquest%3E2115556895%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115556895&rft_id=info:pmid/&rfr_iscdi=true |