(\mathbb{Z}_k\)-stratifolds

Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Angel, Andrés, Torres, Arley Fernando, Segovia, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}_k\). We present a geometric interpretation of the Bockstein long exact sequences and the Atiyah-Hirzebruch spectral sequence for \(\mathbb{Z}_k\)-bordism (\(k\) an odd number). Finally, for \(p\) an odd prime, we give geometric representatives of all classes in \(H_*(B\mathbb{Z}_p;\mathbb{Z}_p)\) using \(\mathbb{Z}_p\)-stratifolds.
ISSN:2331-8422
DOI:10.48550/arxiv.1810.00531