(\mathbb{Z}_k\)-stratifolds
Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generalizing the ideas of \(\mathbb{Z}_k\)-manifolds from Sullivan and stratifolds from Kreck, we define \(\mathbb{Z}_k\)-stratifolds. We show that the bordism theory of \(\mathbb{Z}_k\)-stratifolds is sufficient to represent all homology classes of a \(CW\)-complex with coefficients in \(\mathbb{Z}_k\). We present a geometric interpretation of the Bockstein long exact sequences and the Atiyah-Hirzebruch spectral sequence for \(\mathbb{Z}_k\)-bordism (\(k\) an odd number). Finally, for \(p\) an odd prime, we give geometric representatives of all classes in \(H_*(B\mathbb{Z}_p;\mathbb{Z}_p)\) using \(\mathbb{Z}_p\)-stratifolds. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1810.00531 |